The Antitriangular Factorization of Symmetric Matrices

Indefinite symmetric matrices occur in many applications, such as optimization, least squares problems, partial differential equations, and variational problems. In these applications one is often interested in computing a factorization of the indefinite matrix that puts into evidence the inertia of the matrix or possibly provides an estimate of its eigenvalues. In this paper we propose an algorithm that provides this information for any symmetric indefinite matrix by transforming it to a block antitriangular form using orthogonal similarity transformations. We also show that the algorithm is backward stable and has a complexity that is comparable to existing matrix decompositions for dense indefinite matrices.

[1]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[2]  Christian Mehl,et al.  On Asymptotic Convergence of Nonsymmetric Jacobi Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[3]  Richard P. Brent,et al.  A Note on Downdating the Cholesky Factorization , 1987 .

[4]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[5]  P. Lancaster,et al.  Indefinite Linear Algebra and Applications , 2005 .

[6]  J. Bunch,et al.  Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .

[7]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[8]  Per Christian Hansen,et al.  Computing Symmetric Rank-Revealing Decompositions via Triangular Factorization , 2001, SIAM J. Matrix Anal. Appl..

[9]  Volker Mehrmann,et al.  Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..

[10]  Haesun Park,et al.  Fast Plane Rotations with Dynamic Scaling , 1994, SIAM J. Matrix Anal. Appl..

[11]  Daniel Kressner,et al.  Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.

[12]  Paul Van Dooren,et al.  Recursive approximation of the dominant eigenspace of an indefinite matrix , 2012, J. Comput. Appl. Math..

[13]  Sabine Van Huffel,et al.  Two-way bidiagonalization scheme for downdating the singular-value decomposition , 1995 .

[14]  Sabine Van Huffel,et al.  Parallel Tri- and Bi-Diagonalization of Bordered Bidiagonal Matrices , 1994, Parallel Comput..

[15]  Marc Van Barel,et al.  Divide and conquer algorithms for computing the eigendecomposition of symmetric diagonal-plus-semiseparable matrices , 2005, Numerical Algorithms.

[16]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[17]  Nicholas I. M. Gould,et al.  On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..

[18]  Sven Hammarling,et al.  A canonical form for the algebraic Riccati equation , 1984 .

[19]  J. O. Aasen On the reduction of a symmetric matrix to tridiagonal form , 1971 .