The Antitriangular Factorization of Symmetric Matrices
暂无分享,去创建一个
[1] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[2] Christian Mehl,et al. On Asymptotic Convergence of Nonsymmetric Jacobi Algorithms , 2008, SIAM J. Matrix Anal. Appl..
[3] Richard P. Brent,et al. A Note on Downdating the Cholesky Factorization , 1987 .
[4] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[5] P. Lancaster,et al. Indefinite Linear Algebra and Applications , 2005 .
[6] J. Bunch,et al. Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .
[7] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[8] Per Christian Hansen,et al. Computing Symmetric Rank-Revealing Decompositions via Triangular Factorization , 2001, SIAM J. Matrix Anal. Appl..
[9] Volker Mehrmann,et al. Numerical methods for palindromic eigenvalue problems: Computing the anti‐triangular Schur form , 2009, Numer. Linear Algebra Appl..
[10] Haesun Park,et al. Fast Plane Rotations with Dynamic Scaling , 1994, SIAM J. Matrix Anal. Appl..
[11] Daniel Kressner,et al. Implicit QR algorithms for palindromic and even eigenvalue problems , 2009, Numerical Algorithms.
[12] Paul Van Dooren,et al. Recursive approximation of the dominant eigenspace of an indefinite matrix , 2012, J. Comput. Appl. Math..
[13] Sabine Van Huffel,et al. Two-way bidiagonalization scheme for downdating the singular-value decomposition , 1995 .
[14] Sabine Van Huffel,et al. Parallel Tri- and Bi-Diagonalization of Bordered Bidiagonal Matrices , 1994, Parallel Comput..
[15] Marc Van Barel,et al. Divide and conquer algorithms for computing the eigendecomposition of symmetric diagonal-plus-semiseparable matrices , 2005, Numerical Algorithms.
[16] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[17] Nicholas I. M. Gould,et al. On practical conditions for the existence and uniqueness of solutions to the general equality quadratic programming problem , 1985, Math. Program..
[18] Sven Hammarling,et al. A canonical form for the algebraic Riccati equation , 1984 .
[19] J. O. Aasen. On the reduction of a symmetric matrix to tridiagonal form , 1971 .