Introduction to the basics of entanglement theory in continuous-variable systems

We outline the basic questions that are being studied in any theory of entanglement. Following a brief review of some of the main achievements of entanglement theory for finite-dimensional systems such as qubits, we will then consider entanglement in infinite-dimensional systems. Asking for a theory of entanglement in such systems under experimentally feasible operations leads to the development of the theory of entanglement of Gaussian states. Results of this theory are presented and the tools that have been developed for this theory are then applied to a number of problems.

[1]  S. Bose,et al.  Entanglement quantification and purification in continuous variable systems , 2000 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[4]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[5]  A. Wehrl General properties of entropy , 1978 .

[6]  K. Audenaert,et al.  Entanglement properties of the harmonic chain , 2002, quant-ph/0205025.

[7]  M. Horodecki,et al.  The Uniqueness Theorem for Entanglement Measures , 2001, quant-ph/0105017.

[8]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[10]  L. E. Ballentine Resource letter IQM‐2: Foundations of quantum mechanics since the Bell inequalities , 1987 .

[11]  Martin B Plenio,et al.  Quantum and classical correlations in quantum Brownian motion. , 2002, Physical review letters.

[12]  Bart Demoen,et al.  Completely positive quasi-free maps of the CCR-algebra , 1979 .

[13]  Zhichuan Niu,et al.  Conditions for the local manipulation of tripartite Gaussian states , 2003 .

[14]  Dirk Schlingemann,et al.  Infinitely entangled states , 2002, Quantum Inf. Comput..

[15]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[16]  Martin B Plenio,et al.  Entangling power of passive optical elements. , 2003, Physical review letters.

[17]  M. G. A. Paris,et al.  Purity of Gaussian states: Measurement schemes and time evolution in noisy channels , 2003 .

[18]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[19]  S. J. van Enk Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. , 2003 .

[20]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[21]  Ipe,et al.  Cloning of continuous quantum variables , 1999, Physical review letters.

[22]  Benni Reznik,et al.  Modewise entanglement of Gaussian states , 2003 .

[23]  N. Rowley,et al.  Cranked-shell-model calculations in a truncated space , 1989 .

[24]  Adrian Kent,et al.  Nonlocal correlations are generic in infinite-dimensional bipartite systems , 2000 .

[25]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[26]  E. Polzik,et al.  Narrow-band frequency tunable light source of continuous quadrature entanglement , 2002, quant-ph/0205015.

[27]  Michal Horodecki,et al.  Entanglement measures , 2001, Quantum Inf. Comput..

[28]  J. Cirac,et al.  Reflections upon separability and distillability , 2001, quant-ph/0110081.

[29]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[30]  Vlatko Vedral,et al.  Entanglement in Quantum Information Theory , 1998, quant-ph/9804075.

[31]  M. Plenio,et al.  MINIMAL CONDITIONS FOR LOCAL PURE-STATE ENTANGLEMENT MANIPULATION , 1999, quant-ph/9903054.

[32]  Joseph H. Eberly,et al.  Quantum Optics in Phase Space , 2002 .

[33]  M. Wolf,et al.  Bound entangled Gaussian states. , 2000, Physical review letters.

[34]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[35]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[36]  J. Ignacio Cirac,et al.  Distillability criterion for all bipartite Gaussian states , 2001, Quantum Inf. Comput..

[37]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[38]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[39]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[40]  Sudarshan,et al.  Gaussian-Wigner distributions in quantum mechanics and optics. , 1987, Physical review. A, General physics.

[41]  Martin B Plenio,et al.  Conditions for the local manipulation of Gaussian states. , 2002, Physical review letters.

[42]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[43]  K. Audenaert,et al.  Asymptotic relative entropy of entanglement. , 2001, Physical review letters.

[44]  S. Scheel,et al.  Entanglement transformation at absorbing and amplifying four-port devices , 2000, quant-ph/0004003.

[45]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[46]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[47]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[48]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[49]  Eisert,et al.  Catalysis of entanglement manipulation for mixed states , 2000, Physical review letters.

[50]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[51]  J. Eisert,et al.  A comparison of entanglement measures , 1998, quant-ph/9807034.

[52]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[53]  M. Plenio,et al.  Entanglement-Assisted Local Manipulation of Pure Quantum States , 1999, quant-ph/9905071.

[54]  J. Eisert,et al.  Driving non-Gaussian to Gaussian states with linear optics , 2003 .

[55]  Hall,et al.  Generation of squeezed states by parametric down conversion. , 1986, Physical review letters.

[56]  R. Werner,et al.  Why two qubits are special , 1999, quant-ph/9910064.

[57]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[58]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[59]  J. Ignacio Cirac,et al.  Entanglement transformations of pure Gaussian states , 2003, Quantum Inf. Comput..

[60]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[61]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[62]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[63]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[64]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[65]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[66]  Samuel L. Braunstein,et al.  Broadband teleportation , 1999 .