FEEL: a French Expanded Emotion Lexicon

Sentiment analysis allows the semantic evaluation of pieces of text according to the expressed sentiments and opinions. While considerable attention has been given to the polarity (positive, negative) of English words, only few studies were interested in the conveyed emotions (joy, anger, surprise, sadness, etc.) especially in other languages. In this paper, we present the elaboration and the evaluation of a new French lexicon considering both polarity and emotion. The elaboration method is based on the semi-automatic translation and expansion to synonyms of the English NRC Word Emotion Association Lexicon (NRC-EmoLex). First, online translators have been automatically queried in order to create a first version of our new French Expanded Emotion Lexicon (FEEL). Then, a human professional translator manually validated the automatically obtained entries and the associated emotions. She agreed with more than 94 % of the pre-validated entries (those found by a majority of translators) and less than 18 % of the remaining entries (those found by very few translators). This result highlights that online tools can be used to get high quality resources with low cost. Annotating a subset of terms by three different annotators shows that the associated sentiments and emotions are consistent. Finally, extensive experiments have been conducted to compare the final version of FEEL with other existing French lexicons. Various French benchmarks for polarity and emotion classifications have been used in these evaluations. Experiments have shown that FEEL obtains competitive results for polarity, and significantly better results for basic emotions.

[1]  Hermann Ney,et al.  The Alignment Template Approach to Statistical Machine Translation , 2004, CL.

[2]  Preslav Nakov,et al.  SemEval-2013 Task 2: Sentiment Analysis in Twitter , 2013, *SEMEVAL.

[3]  Eric SanJuan,et al.  Investigating the Image of Entities in Social Media: Dataset Design and First Results , 2014, LREC.

[4]  Mathieu Lafourcade,et al.  Collecting and Evaluating Lexical Polarity with A Game With a Purpose , 2015, RANLP.

[5]  Nuria Gala,et al.  Propagation de polarités dans des familles de mots : impact de la morphologie dans la construction d'un lexique pour l'analyse d'opinions , 2012 .

[6]  K. Bretonnel Cohen,et al.  Sentiment Analysis of Suicide Notes: A Shared Task , 2012, Biomedical informatics insights.

[7]  Fanny Rinck,et al.  Lexique des affects : constitution de ressources pédagogiques numériques. , 2006 .

[8]  Preslav Nakov,et al.  SemEval-2014 Task 9: Sentiment Analysis in Twitter , 2014, *SEMEVAL.

[9]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[10]  Michael S. Lewis-Beck,et al.  Forecasting elections in Europe: Synthetic models , 2015 .

[11]  Mark Steyvers,et al.  Identifying Emotions, Intentions, and Attitudes in Text Using a Game with a Purpose , 2010, HLT-NAACL 2010.

[12]  Christian Homburg,et al.  Measuring and Managing Consumer Sentiment in an Online Community Environment , 2015 .

[13]  Cindy K. Chung,et al.  The development and psychometric properties of LIWC2007 , 2007 .

[14]  Thomas Wetter,et al.  Screening Internet forum participants for depression symptoms by assembling and enhancing multiple NLP methods , 2015, Comput. Methods Programs Biomed..

[15]  Claire Cardie,et al.  Improving Agreement and Disagreement Identification in Online Discussions with A Socially-Tuned Sentiment Lexicon , 2014, WASSA@ACL.

[16]  Mingliang Chen,et al.  Building emotional dictionary for sentiment analysis of online news , 2014, World Wide Web.

[17]  Gérard Dray,et al.  Web opinion mining: how to extract opinions from blogs? , 2008, CSTST.

[18]  Alain Joubert,et al.  Vous aimez ?...ou pas ? LikeIt, un jeu pour construire une ressource lexicale de polarité , 2015, JEPTALNRECITAL.

[19]  Takahiro Hara,et al.  Improving the extraction of bilingual terminology from Wikipedia , 2009, TOMCCAP.

[20]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[21]  Nicholas Asher,et al.  Distilling Opinion in Discourse: A Preliminary Study , 2008, COLING.

[22]  Sanda M. Harabagiu,et al.  EmpaTweet: Annotating and Detecting Emotions on Twitter , 2012, LREC.

[23]  Masatoshi Yoshikawa,et al.  Bilingual Terminology Acquisition from Comparable Corpora and Phrasal Translation to Cross-Language Information Retrieval , 2003, ACL.

[24]  Marshall S. Smith,et al.  The general inquirer: A computer approach to content analysis. , 1967 .

[25]  Joel D. Martin,et al.  Sentiment, emotion, purpose, and style in electoral tweets , 2015, Inf. Process. Manag..

[26]  Nathan Schneider,et al.  Association for Computational Linguistics: Human Language Technologies , 2011 .

[27]  Khurshid Ahmad,et al.  Is there a language of sentiment? An analysis of lexical resources for sentiment analysis , 2013, Language Resources and Evaluation.

[28]  Navneet Kaur,et al.  Opinion mining and sentiment analysis , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[29]  P. Ekman An argument for basic emotions , 1992 .

[30]  Saif Mohammad,et al.  Portable Features for Classifying Emotional Text , 2012, NAACL.

[31]  Mathieu Lafourcade,et al.  Games with a Purpose (Gwaps): Lafourcade/Games with a Purpose (Gwaps) , 2015 .

[32]  Philip J. Stone,et al.  Extracting Information. (Book Reviews: The General Inquirer. A Computer Approach to Content Analysis) , 1967 .

[33]  Mitsuru Ishizuka,et al.  SentiFul: A Lexicon for Sentiment Analysis , 2011, IEEE Transactions on Affective Computing.

[34]  Mathieu Lafourcade,et al.  GWAPs for Natural Language Processing , 2015 .

[35]  Pascal Poncelet,et al.  Collaborative Content-Based Method for Estimating User Reputation in Online Forums , 2015, WISE.

[36]  Colin Cherry,et al.  Binary Classifiers and Latent Sequence Models for Emotion Detection in Suicide Notes , 2012, Biomedical informatics insights.

[37]  Virginia Francisco,et al.  Exploring the Compositionality of Emotions in Text: Word Emotions, Sentence Emotions and Automated Tagging , 2006 .

[38]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[39]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[40]  Ram Mohana Reddy Guddeti,et al.  Influence factor based opinion mining of Twitter data using supervised learning , 2014, 2014 Sixth International Conference on Communication Systems and Networks (COMSNETS).

[41]  R. Plutchik A GENERAL PSYCHOEVOLUTIONARY THEORY OF EMOTION , 1980 .

[42]  Preslav Nakov,et al.  SemEval-2015 Task 10: Sentiment Analysis in Twitter , 2015, *SEMEVAL.

[43]  Carlo Strapparava,et al.  Learning to identify emotions in text , 2008, SAC '08.

[44]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[45]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[46]  Saif Mohammad,et al.  Sentiment Analysis of Short Informal Texts , 2014, J. Artif. Intell. Res..

[47]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[48]  Pierre Zweigenbaum,et al.  Analyse des émotions, sentiments et opinions exprimés dans les tweets : présentation et résultats de l'édition 2015 du défi fouille de texte (DEFT) , 2015 .

[49]  Frédéric Béchet,et al.  Sentiment Lexicon-Based Features for Sentiment Analysis in Short Text , 2015, Res. Comput. Sci..

[50]  Saif Mohammad,et al.  Using Hashtags to Capture Fine Emotion Categories from Tweets , 2015, Comput. Intell..

[51]  J. Azé,et al.  Patient's rationale: Patient Knowledge retrieval from health forums , 2014, eTELEMED 2014.