Self-similar algebraic spiral solution of 2-D incompressible Euler equations

In this paper, we prove the existence of self-similar algebraic spiral solutions for 2-D incompressible Euler equations for the initial vorticity of the form $|y|^{-\frac1\mu}\ \mathring{\omega}(\theta)$ with $\mu>\frac12$ and $\mathring{\omega}\in L^1(\mathbb T)$ satisfying $m$-fold symmetry ($m\geq 2$) and a dominant condition. As an important application, we prove the existence of weak solution when $\mathring{\omega}$ is a Radon measure on $\mathbb T$ with $m$-fold symmetry, which is related to the vortex sheet solution.

[1]  C. Garc'ia,et al.  Self-similar spirals for the generalized surface quasi-geostrophic equations , 2022, 2207.12363.

[2]  W. S. O.za'nski,et al.  Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations , 2022, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[3]  Maria Colombo,et al.  Non-uniqueness of Leray solutions of the forced Navier-Stokes equations , 2021, Annals of Mathematics.

[4]  W. S. O.za'nski,et al.  Well-posedness of logarithmic spiral vortex sheets , 2021, 2110.07543.

[5]  A. Bressan,et al.  On self-similar solutions to the incompressible Euler equations , 2020 .

[6]  A. Ionescu,et al.  Axi‐symmetrization near Point Vortex Solutions for the 2D Euler Equation , 2019, Communications on Pure and Applied Mathematics.

[7]  T. Elgindi,et al.  On Singular Vortex Patches, I: Well-posedness Issues , 2019, Memoirs of the American Mathematical Society.

[8]  M. Vishik Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II , 2018, 1805.09426.

[9]  Zhifei Zhang,et al.  Linear Inviscid Damping and Vorticity Depletion for Shear Flows , 2017, Annals of PDE.

[10]  T. Elgindi,et al.  Symmetries and Critical Phenomena in Fluids , 2016, Communications on Pure and Applied Mathematics.

[11]  V. Elling Self-Similar 2d Euler Solutions with Mixed-Sign Vorticity , 2016 .

[12]  V. Elling Algebraic spiral solutions of the 2d incompressible Euler equations , 2016 .

[13]  Xu-jia Wang,et al.  REGULARITY AND ANALYTICITY OF SOLUTIONS IN A DIRECTION FOR ELLIPTIC EQUATIONS , 2015 .

[14]  Hongjie Dong,et al.  Partial Schauder estimates for second-order elliptic and parabolic equations: a revisit , 2015, 1502.00886.

[15]  A. Kiselev,et al.  Small scale creation for solutions of the incompressible two dimensional Euler equation , 2013, 1310.4799.

[16]  V. Elling Algebraic spiral solutions of 2d incompressible Euler , 2013, 1308.0881.

[17]  Jean Bourgain,et al.  Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.

[18]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[19]  H. Jia,et al.  Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? , 2013, 1306.2136.

[20]  Emil Wiedemann,et al.  Vanishing viscosity as a selection principle for the Euler equations: The case of 3D shear flow , 2012, 1208.2352.

[21]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[22]  H. Morita,et al.  Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations , 2009, 0905.1551.

[23]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[24]  Mikhail Vasilʹevich Fedori︠u︡k,et al.  Asymptotic Analysis: Linear Ordinary Differential Equations , 1993 .

[25]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[26]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[27]  D. I. Pullin,et al.  The large-scale structure of unsteady self-similar rolled-up vortex sheets , 1978, Journal of Fluid Mechanics.

[28]  Leon O. Chua,et al.  Methods of nonlinear analysis , 1972 .

[29]  Chengchun Hao Introduction to Harmonic Analysis , 2016 .

[30]  Sabine Fenstermacher,et al.  Mathematical Theory Of Incompressible Non Viscous Fluids , 2016 .

[31]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[32]  D. Pullin On similarity flows containing two-branched vortex sheets , 1989 .

[33]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .