Solving Generic Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms

A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices with a Metzler-type sign pattern. Our approach is based on tropical geometry. We define tropical spectrahedra as the images by the valuation of nonarchimedean spectrahedra, and provide an explicit description of the tropical spectrahedra arising from the aforementioned class of problems. We deduce that the tropical semidefinite feasibility problems obtained in this way are equivalent to stochastic mean payoff games, which have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.

[1]  Mohab Safey El Din,et al.  Exact algorithms for linear matrix inequalities , 2015, SIAM J. Optim..

[2]  Pierre Corbineau,et al.  On the Generation of Positivstellensatz Witnesses in Degenerate Cases , 2011, ITP.

[3]  Kurt Mehlhorn,et al.  Optimal search for rationals , 2003, Inf. Process. Lett..

[4]  Marianne Akian,et al.  Solving multichain stochastic games with mean payoff by policy iteration , 2013, 52nd IEEE Conference on Decision and Control.

[5]  Henryk Wozniakowski,et al.  Complexity of linear programming , 1982, Oper. Res. Lett..

[6]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[7]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[8]  Marianne Akian,et al.  Ergodicity conditions for zero-sum games , 2014, 1405.4658.

[9]  J. Filar,et al.  Competitive Markov Decision Processes , 1996 .

[10]  Bernd Grtner,et al.  Approximation Algorithms and Semidefinite Programming , 2012 .

[11]  M. Paterson,et al.  The complexity of mean payo games on graphs , 1996 .

[12]  Xavier Allamigeon,et al.  Tropicalizing the Simplex Algorithm , 2013, SIAM J. Discret. Math..

[13]  Nimrod Megiddo,et al.  Advances in Economic Theory: On the complexity of linear programming , 1987 .

[14]  Bernd Sturmfels Viro's theorem for complete intersections , 1994 .

[15]  Elon Kohlberg,et al.  Invariant Half-Lines of Nonexpansive Piecewise-Linear Transformations , 1980, Math. Oper. Res..

[16]  B. M. Fulk MATH , 1992 .

[17]  S. Lippman,et al.  Stochastic Games with Perfect Information and Time Average Payoff , 1969 .

[18]  Claus Scheiderer,et al.  Sums of squares of polynomials with rational coefficients , 2012, 1209.2976.

[19]  Nathan Bowler,et al.  Matroids over hyperfields , 2016, 1601.01204.

[20]  Anne Condon,et al.  The Complexity of Stochastic Games , 1992, Inf. Comput..

[21]  Frédéric Bihan,et al.  Viro Method for the Construction of Real Complete Intersections , 2002 .

[22]  G. Hardy,et al.  The general theory of Dirichlet's series , 1916, The Mathematical Gazette.

[23]  Alain Connes,et al.  The hyperring of adèle classes , 2011 .

[24]  Xavier Allamigeon,et al.  Solving Generic Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms , 2016, J. Symb. Comput..

[25]  Simone Naldi Solving Rank-Constrained Semidefinite Programs in Exact Arithmetic , 2016, ISSAC.

[26]  Uri Zwick,et al.  An Improved Version of the Random-Facet Pivoting Rule for the Simplex Algorithm , 2015, STOC.

[27]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[28]  Oleg Viro Hyperfields for Tropical Geometry I. Hyperfields and dequantization , 2010 .

[29]  Peter Bro Miltersen,et al.  The Complexity of Solving Stochastic Games on Graphs , 2009, ISAAC.

[30]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[31]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[32]  Frank Vallentin,et al.  On the Turing Model Complexity of Interior Point Methods for Semidefinite Programming , 2015, SIAM J. Optim..

[33]  R. Nussbaum Convexity and log convexity for the spectral radius , 1986 .

[34]  Josephine Yu Tropicalizing the positive semidefinite cone , 2013, 1309.6011.

[35]  Mike Develin,et al.  Tropical Polytopes and Cellular Resolutions , 2007, Exp. Math..

[36]  S. Gaubert,et al.  Linear independence over tropical semirings and beyond , 2008, 0812.3496.

[37]  Stuart A. Steinberg Lattice-ordered Rings and Modules , 2009 .

[38]  Nir Halman,et al.  Simple Stochastic Games, Parity Games, Mean Payoff Games and Discounted Payoff Games Are All LP-Type Problems , 2007, Algorithmica.

[39]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[40]  Lou van den Dries,et al.  THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES , 1998 .

[41]  Thomas Markwig,et al.  A Field of Generalised Puiseux Series for Tropical Geometry , 2007, 0709.3784.

[42]  David Auger,et al.  Finding Optimal Strategies of Almost Acyclic Simple Stochastic Games , 2014, TAMC.

[43]  Alexander E. Guterman,et al.  Tropical Polyhedra are Equivalent to mean Payoff Games , 2009, Int. J. Algebra Comput..

[44]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[45]  Ricardo D. Katz,et al.  Minimal half-spaces and external representation of tropical polyhedra , 2009, 0908.1586.