Stacking Fault Induced Symmetry Breaking in van der Waals Nanowires.

While traditional ferroelectrics are based on polar crystals in bulk or thin film form, two-dimensional and layered materials can support mechanisms for symmetry breaking between centrosymmetric building blocks, e.g., by creating low-symmetry interfaces in van der Waals stacks. Here, we introduce an approach toward symmetry breaking in van der Waals crystals that relies on the spontaneous incorporation of stacking faults in a nonpolar bulk layer sequence. The concept is realized in nanowires consisting of Se-rich group IV monochalcogenide (GeSe1-xSx) alloys, obtained by vapor-liquid-solid growth. The single crystalline wires adopt a layered structure in which the nonpolar A-B bulk stacking along the nanowire axis is interrupted by single-layer stacking faults with local A-A' stacking. Density functional theory explains this behavior by a reduced stacking fault formation energy in GeSe (or Se-rich GeSe1-xSx alloys). Computations demonstrate that, similar to monochalcogenide monolayers, the inserted A-layers should show a spontaneous electric polarization with a switching barrier consistent with a Curie temperature above room temperature. Second-harmonic generation signals are consistent with a variable density of stacking faults along the wires. Our results point to possible routes for designing ferroelectrics via the layer stacking in van der Waals crystals.

[1]  S. Lau,et al.  Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides , 2022, Science.

[2]  P. Sutter,et al.  Tunable Layer Orientation and Morphology in Vapor–Liquid–Solid Growth of One-Dimensional GeS van der Waals Nanostructures , 2021 .

[3]  C. Argyropoulos,et al.  Optoelectronics and Nanophotonics of Vapor-Liquid-Solid Grown GaSe van der Waals Nanoribbons. , 2021, Nano letters.

[4]  Ziliang Ye,et al.  A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect , 2021, Science.

[5]  A. Gruverman,et al.  Few-layer tin sulfide (SnS): Controlled synthesis, thickness dependent vibrational properties, and ferroelectricity , 2021 .

[6]  Kenji Watanabe,et al.  Stacking-engineered ferroelectricity in bilayer boron nitride , 2020, Science.

[7]  T. Taniguchi,et al.  Interfacial ferroelectricity by van der Waals sliding , 2020, Science.

[8]  C. Argyropoulos,et al.  Cathodoluminescence of Ultrathin Twisted Ge1–xSnxS van der Waals Nanoribbon Waveguides , 2020, Advanced materials.

[9]  E. Sutter,et al.  Van der Waals Nanowires with Continuously Variable Interlayer Twist and Twist Homojunctions , 2020, Advanced Functional Materials.

[10]  E. Sutter,et al.  Surface Passivation by Excess Sulfur for Controlled Synthesis of Large, Thin SnS Flakes , 2020 .

[11]  S. Parkin,et al.  Microscopic Manipulation of Ferroelectric Domains in SnSe Monolayers at Room Temperature , 2020, Nano letters.

[12]  Bingbing Tian,et al.  In-Plane Ferroelectric Tin Monosulfide and Its Application in Ferroelectric Analog Synaptic Device. , 2020, ACS nano.

[13]  K. Nagashio,et al.  Purely in-plane ferroelectricity in monolayer SnS at room temperature , 2020, Nature Communications.

[14]  E. Sutter,et al.  Vapor-Liquid-Solid Growth and Optoelectronics of Gallium Sulfide van der Waals Nanowires. , 2020, ACS nano.

[15]  D. Scanlon,et al.  GeSe: Optical Spectroscopy and Theoretical Study of a van der Waals Solar Absorber , 2020, Chemistry of materials : a publication of the American Chemical Society.

[16]  B. Zhang,et al.  Few-Layer to Multilayer Germanium (II) Sulfide: Synthesis, Structure, Stability, and Optoelectronics. , 2019, ACS nano.

[17]  K. Loh,et al.  Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. , 2019, Nano letters.

[18]  Peter Sutter,et al.  Chiral twisted van der Waals nanowires , 2019, Nature.

[19]  J. Hao,et al.  Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit , 2019, Nature Communications.

[20]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[21]  M. Fuhrer,et al.  Room temperature in-plane ferroelectricity in van der Waals In2Se3 , 2018, Science Advances.

[22]  T. Zhai,et al.  Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity , 2018, Advanced science.

[23]  E. Sutter,et al.  1D Wires of 2D Layered Materials: Germanium Sulfide Nanowires as Efficient Light Emitters , 2017 .

[24]  Rui Wang,et al.  3R MoS2 with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device , 2017, Advanced materials.

[25]  Xiaofeng Qian,et al.  Two-dimensional multiferroics in monolayer group IV monochalcogenides , 2017 .

[26]  A. Krasheninnikov,et al.  Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. , 2016, Nano letters.

[27]  Xiao Cheng Zeng,et al.  Intrinsic Ferroelasticity and/or Multiferroicity in Two-Dimensional Phosphorene and Phosphorene Analogues. , 2016, Nano letters.

[28]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[29]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[30]  Dimitri D. Vaughn,et al.  Single-crystal colloidal nanosheets of GeS and GeSe. , 2010, Journal of the American Chemical Society.

[31]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[32]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[33]  G. Ceder,et al.  Automating First-Principles Phase Diagram Calculations , 2002, cond-mat/0201511.

[34]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[35]  H. Wiedemeier,et al.  Refinement of the structures of GeS, GeSe, SnS and SnSe , 1978 .