A Large (≈ 1 pc) Contracting Envelope Around the Prestellar Core L1544

Prestellar cores, the birthplace of Sun-like stars, form from the fragmentation of the filamentary structure that composes molecular clouds, from which they must inherit at least partially the kinematics. Furthermore, when they are on the verge of gravitational collapse, they show signs of subsonic infall motions. How extended these motions are, which depends on how the collapse occurs, remains largely unknown. We want to investigate the kinematics of the envelope that surrounds the prototypical prestellar core L1544, studying the cloud-core connection. To our aims, we observed the HCO+ (1–0) transition in a large map. HCO+ is expected to be abundant in the envelope, making it an ideal probe of the large-scale kinematics in the source. We modeled the spectrum at the dust peak by means of a nonlocal thermodynamical equilibrium radiative transfer. In order to reproduce the spectrum at the dust peak, a large (∼1 pc) envelope is needed, with low density (tens of cm−3 at most) and contraction motions, with an inward velocity of ≈ 0.05 km s−1. We fitted the data cube using the Hill5 model, which implements a simple model for the optical depth and excitation temperature profiles along the line of sight, in order to obtain a map of the infall velocity. This shows that the infall motions are extended, with typical values in the range 0.1–0.2 km s−1. Our results suggest that the contraction motions extend in the diffuse envelope surrounding the core, which is consistent with recent magnetic field measurements in the source, which showed that the envelope is magnetically supercritical.

[1]  J. Pineda,et al.  The Central 1000 au of a Prestellar Core Revealed with ALMA. II. Almost Complete Freeze-out , 2022, The Astrophysical Journal.

[2]  C. Heiles,et al.  An early transition to magnetic supercriticality in star formation , 2021, Nature.

[3]  G. Luo,et al.  The Role of Neutral Hydrogen in Setting the Abundances of Molecular Species in the Milky Way’s Diffuse Interstellar Medium. II. Comparison between Observations and Theoretical Models , 2021, The Astrophysical Journal.

[4]  P. Caselli,et al.  The cosmic-ray ionisation rate in the pre-stellar core L1544 , 2021, Astronomy & Astrophysics.

[5]  K. Covey,et al.  Structure and kinematics of the Taurus star-forming region from Gaia-DR2 and VLBI astrometry , 2019, Astronomy & Astrophysics.

[6]  M. Juvela,et al.  Why does ammonia not freeze out in the centre of pre-stellar cores? , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  P. Caselli,et al.  High-sensitivity maps of molecular ions in L1544 , 2019, Astronomy & Astrophysics.

[8]  J. Pineda,et al.  The Central 1000 au of a Pre-stellar Core Revealed with ALMA. I. 1.3 mm Continuum Observations , 2019, The Astrophysical Journal.

[9]  M. Gerin,et al.  Molecular ion abundances in the diffuse ISM: CF+, HCO+, HOC+, and C3H+ , 2018, Astronomy & Astrophysics.

[10]  P. Caselli,et al.  14N/15N ratio measurements in prestellar cores with N2H+: new evidence of 15N-antifractionation , 2018, Astronomy & Astrophysics.

[11]  H Germany,et al.  Cosmic-ray ionisation in circumstellar discs , 2018, Astronomy & Astrophysics.

[12]  L. Hartmann,et al.  Are fibres in molecular cloud filaments real objects , 2017, 1708.01669.

[13]  P. Caselli,et al.  The observed chemical structure of L1544 , 2017, 1707.06015.

[14]  P. Caselli,et al.  NH3 (10–00) in the pre-stellar core L1544 , 2017, 1706.03063.

[15]  E. F. Dishoeck,et al.  Photodissociation and photoionisation of atoms and molecules of astrophysical interest , 2017, 1701.04459.

[16]  G. Williger,et al.  INFALL/EXPANSION VELOCITIES IN THE LOW-MASS DENSE CORES L492, L694-2, AND L1521F: DEPENDENCE ON POSITION AND MOLECULAR TRACER , 2016, 1610.01233.

[17]  P. Caselli,et al.  Spin-state chemistry of deuterated ammonia , 2015, 1507.02856.

[18]  P. Caselli,et al.  Benchmarking spin-state chemistry in starless core models , 2015, 1501.04825.

[19]  Y. Shirley The Critical Density and the Effective Excitation Density of Commonly Observed Molecular Dense Gas Tracers , 2015, 1501.01629.

[20]  M. Tafalla,et al.  Chains of dense cores in the Taurus L1495/B213 complex , 2014, 1412.1083.

[21]  P. Caselli,et al.  The dynamics of collapsing cores and star formation , 2014, 1410.5889.

[22]  P. Caselli,et al.  Detection of (15)NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate (14)N/(15)N values , 2013, 1306.0465.

[23]  Gildas Team,et al.  GILDAS: Grenoble Image and Line Data Analysis Software , 2013 .

[24]  J. Kauffmann,et al.  Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region , 2013, 1303.2118.

[25]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[26]  J. Troe,et al.  A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA) , 2012, 1201.5887.

[27]  Adam Ginsburg,et al.  PySpecKit: Python Spectroscopic Toolkit , 2011 .

[28]  M. Gerin,et al.  Molecular absorption lines toward star-forming regions: a comparative study of HCO+, HNC, HCN, and CN , 2010, 1006.0582.

[29]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[30]  P. Caselli,et al.  Dynamics and depletion in thermally supercritical starless cores , 2009, 0908.2400.

[31]  E. Falgarone,et al.  Models of turbulent dissipation regions in the diffuse interstellar medium , 2009, 0901.3712.

[32]  Gopal Narayanan,et al.  Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.

[33]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[34]  Gopal Narayanan,et al.  The Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus Molecular Cloud , 2007, 0802.2556.

[35]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[36]  Leiden,et al.  Observing the gas temperature drop in the high-density nucleus of L 1544 , 2007, 0705.0471.

[37]  Hyung-Mok Lee,et al.  Probing Inward Motions in Starless Cores Using the HCN(J = 1-0) Hyperfine Transitions: A Pointing Survey toward Central Regions , 2007, 0704.2930.

[38]  J. L. Bourlot,et al.  A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.

[39]  P. Myers,et al.  Molecular Line Profile Fitting with Analytic Radiative Transfer Models , 2004, astro-ph/0410748.

[40]  G. Rybicki,et al.  Radiative Transfer and Starless Cores , 2004, astro-ph/0407433.

[41]  Di Li,et al.  H I Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation , 2002, astro-ph/0206396.

[42]  P. Caselli,et al.  Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.

[43]  H Germany,et al.  Systematic Molecular Differentiation in Starless Cores , 2001, astro-ph/0112487.

[44]  P. Caselli,et al.  Molecular Ions in L1544. I. Kinematics , 2001, astro-ph/0109021.

[45]  P. Myers,et al.  A Survey for Infall Motions toward Starless Cores. II. CS (2-1) and N2H+ (1-0) Mapping Observations , 2001, astro-ph/0105515.

[46]  A. Dalgarno,et al.  H3+ in diffuse interstellar gas , 2000 .

[47]  P. Myers,et al.  A Survey of Infall Motions toward Starless Cores. I. CS (2-1) and N2H+ (1-0) Observations , 1999, astro-ph/9906468.

[48]  N. Evans Physical conditions in regions of star formation , 1999, astro-ph/9905050.

[49]  F. Motte,et al.  The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .

[50]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[51]  P. Caselli,et al.  L1544: A Starless Dense Core with Extended Inward Motions , 1998 .

[52]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[53]  G. Garay,et al.  A Search for Infall Motions toward Nearby Young Stellar Objects , 1997, astro-ph/9707011.

[54]  D. Wilner,et al.  A Simple Model of Spectral-Line Profiles from Contracting Clouds , 1996 .

[55]  H. Liszt,et al.  3 Millimeter J = 1--0 HCO + Emission from the Diffuse Cloud toward zeta Ophiuchi , 1994 .

[56]  E. Keto Radiative Transfer Modeling of Radio-Frequency Spectral Line Data: Accretion onto G10.6-0.4 , 1990 .

[57]  P. Myers Dense cores in dark clouds. III. Subsonic turbulence. , 1983 .

[58]  F. Shu Self-similar collapse of isothermal spheres and star formation. , 1977 .

[59]  R. L. Brown,et al.  On the interpretation of carbon monoxide self-absorption profiles seen toward embedded stars in dense interstellar clouds. , 1977 .

[60]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[61]  M. Penston Dynamics of Self-Gravitating Gaseous Spheres—III: Analytical Results in the Free-fall of Isothermal Cases , 1969 .

[62]  Astronomy Astrophysics , 2003 .

[63]  N. Peretto,et al.  Astronomy Astrophysics Letter to the Editor Characterizing interstellar filaments with Herschel in IC 5146 ⋆,⋆⋆ , 2022 .