A Large (≈ 1 pc) Contracting Envelope Around the Prestellar Core L1544
暂无分享,去创建一个
[1] J. Pineda,et al. The Central 1000 au of a Prestellar Core Revealed with ALMA. II. Almost Complete Freeze-out , 2022, The Astrophysical Journal.
[2] C. Heiles,et al. An early transition to magnetic supercriticality in star formation , 2021, Nature.
[3] G. Luo,et al. The Role of Neutral Hydrogen in Setting the Abundances of Molecular Species in the Milky Way’s Diffuse Interstellar Medium. II. Comparison between Observations and Theoretical Models , 2021, The Astrophysical Journal.
[4] P. Caselli,et al. The cosmic-ray ionisation rate in the pre-stellar core L1544 , 2021, Astronomy & Astrophysics.
[5] K. Covey,et al. Structure and kinematics of the Taurus star-forming region from Gaia-DR2 and VLBI astrometry , 2019, Astronomy & Astrophysics.
[6] M. Juvela,et al. Why does ammonia not freeze out in the centre of pre-stellar cores? , 2019, Monthly Notices of the Royal Astronomical Society.
[7] P. Caselli,et al. High-sensitivity maps of molecular ions in L1544 , 2019, Astronomy & Astrophysics.
[8] J. Pineda,et al. The Central 1000 au of a Pre-stellar Core Revealed with ALMA. I. 1.3 mm Continuum Observations , 2019, The Astrophysical Journal.
[9] M. Gerin,et al. Molecular ion abundances in the diffuse ISM: CF+, HCO+, HOC+, and C3H+ , 2018, Astronomy & Astrophysics.
[10] P. Caselli,et al. 14N/15N ratio measurements in prestellar cores with N2H+: new evidence of 15N-antifractionation , 2018, Astronomy & Astrophysics.
[11] H Germany,et al. Cosmic-ray ionisation in circumstellar discs , 2018, Astronomy & Astrophysics.
[12] L. Hartmann,et al. Are fibres in molecular cloud filaments real objects , 2017, 1708.01669.
[13] P. Caselli,et al. The observed chemical structure of L1544 , 2017, 1707.06015.
[14] P. Caselli,et al. NH3 (10–00) in the pre-stellar core L1544 , 2017, 1706.03063.
[15] E. F. Dishoeck,et al. Photodissociation and photoionisation of atoms and molecules of astrophysical interest , 2017, 1701.04459.
[16] G. Williger,et al. INFALL/EXPANSION VELOCITIES IN THE LOW-MASS DENSE CORES L492, L694-2, AND L1521F: DEPENDENCE ON POSITION AND MOLECULAR TRACER , 2016, 1610.01233.
[17] P. Caselli,et al. Spin-state chemistry of deuterated ammonia , 2015, 1507.02856.
[18] P. Caselli,et al. Benchmarking spin-state chemistry in starless core models , 2015, 1501.04825.
[19] Y. Shirley. The Critical Density and the Effective Excitation Density of Commonly Observed Molecular Dense Gas Tracers , 2015, 1501.01629.
[20] M. Tafalla,et al. Chains of dense cores in the Taurus L1495/B213 complex , 2014, 1412.1083.
[21] P. Caselli,et al. The dynamics of collapsing cores and star formation , 2014, 1410.5889.
[22] P. Caselli,et al. Detection of (15)NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate (14)N/(15)N values , 2013, 1306.0465.
[23] Gildas Team,et al. GILDAS: Grenoble Image and Line Data Analysis Software , 2013 .
[24] J. Kauffmann,et al. Cores, filaments, and bundles: hierarchical core formation in the L1495/B213 Taurus region , 2013, 1303.2118.
[25] G. Bruce Berriman,et al. Astrophysics Source Code Library , 2012, ArXiv.
[26] J. Troe,et al. A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA) , 2012, 1201.5887.
[27] Adam Ginsburg,et al. PySpecKit: Python Spectroscopic Toolkit , 2011 .
[28] M. Gerin,et al. Molecular absorption lines toward star-forming regions: a comparative study of HCO+, HNC, HCN, and CN , 2010, 1006.0582.
[29] H. Roussel,et al. From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.
[30] P. Caselli,et al. Dynamics and depletion in thermally supercritical starless cores , 2009, 0908.2400.
[31] E. Falgarone,et al. Models of turbulent dissipation regions in the diffuse interstellar medium , 2009, 0901.3712.
[32] Gopal Narayanan,et al. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.
[33] A. Goodman,et al. CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.
[34] Gopal Narayanan,et al. The Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus Molecular Cloud , 2007, 0802.2556.
[35] E. Bergin,et al. Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.
[36] Leiden,et al. Observing the gas temperature drop in the high-density nucleus of L 1544 , 2007, 0705.0471.
[37] Hyung-Mok Lee,et al. Probing Inward Motions in Starless Cores Using the HCN(J = 1-0) Hyperfine Transitions: A Pointing Survey toward Central Regions , 2007, 0704.2930.
[38] J. L. Bourlot,et al. A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.
[39] P. Myers,et al. Molecular Line Profile Fitting with Analytic Radiative Transfer Models , 2004, astro-ph/0410748.
[40] G. Rybicki,et al. Radiative Transfer and Starless Cores , 2004, astro-ph/0407433.
[41] Di Li,et al. H I Narrow Self-Absorption in Dark Clouds: Correlations with Molecular Gas and Implications for Cloud Evolution and Star Formation , 2002, astro-ph/0206396.
[42] P. Caselli,et al. Dense Cores in Dark Clouds. XIV. N2H+ (1-0) Maps of Dense Cloud Cores , 2002, astro-ph/0202173.
[43] H Germany,et al. Systematic Molecular Differentiation in Starless Cores , 2001, astro-ph/0112487.
[44] P. Caselli,et al. Molecular Ions in L1544. I. Kinematics , 2001, astro-ph/0109021.
[45] P. Myers,et al. A Survey for Infall Motions toward Starless Cores. II. CS (2-1) and N2H+ (1-0) Mapping Observations , 2001, astro-ph/0105515.
[46] A. Dalgarno,et al. H3+ in diffuse interstellar gas , 2000 .
[47] P. Myers,et al. A Survey of Infall Motions toward Starless Cores. I. CS (2-1) and N2H+ (1-0) Observations , 1999, astro-ph/9906468.
[48] N. Evans. Physical conditions in regions of star formation , 1999, astro-ph/9905050.
[49] F. Motte,et al. The initial conditions of isolated star formation — III. Millimetre continuum mapping of pre-stellar cores , 1999 .
[50] T. Wilson. Isotopes in the interstellar medium and circumstellar envelopes , 1999 .
[51] P. Caselli,et al. L1544: A Starless Dense Core with Extended Inward Motions , 1998 .
[52] A. Goodman,et al. Coherence in Dense Cores. II. The Transition to Coherence , 1998 .
[53] G. Garay,et al. A Search for Infall Motions toward Nearby Young Stellar Objects , 1997, astro-ph/9707011.
[54] D. Wilner,et al. A Simple Model of Spectral-Line Profiles from Contracting Clouds , 1996 .
[55] H. Liszt,et al. 3 Millimeter J = 1--0 HCO + Emission from the Diffuse Cloud toward zeta Ophiuchi , 1994 .
[56] E. Keto. Radiative Transfer Modeling of Radio-Frequency Spectral Line Data: Accretion onto G10.6-0.4 , 1990 .
[57] P. Myers. Dense cores in dark clouds. III. Subsonic turbulence. , 1983 .
[58] F. Shu. Self-similar collapse of isothermal spheres and star formation. , 1977 .
[59] R. L. Brown,et al. On the interpretation of carbon monoxide self-absorption profiles seen toward embedded stars in dense interstellar clouds. , 1977 .
[60] Richard B. Larson,et al. Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .
[61] M. Penston. Dynamics of Self-Gravitating Gaseous Spheres—III: Analytical Results in the Free-fall of Isothermal Cases , 1969 .
[62] Astronomy Astrophysics , 2003 .
[63] N. Peretto,et al. Astronomy Astrophysics Letter to the Editor Characterizing interstellar filaments with Herschel in IC 5146 ⋆,⋆⋆ , 2022 .