A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries

Surface-plasmon polaritons are electromagnetic waves propagating on the surface of a metal. Thanks to subwavelength confinement, they can concentrate optical energy on the micrometer or even nanometer scale, enabling new applications in bio-sensing, optical interconnects, and nonlinear optics, where small footprint and strong field concentration are essential. The major obstacle in developing plasmonic applications is dissipative loss, which limits the propagation length of surface plasmons and broadens the bandwidth of surface-plasmon resonances. Here, a new analysis of plasmonic materials and geometries is presented which fully considers the tradeoff between propagation length and degree of confinement. It is based on a two-dimensional analysis of two independent figures of merit and the analysis is applied to relevant plasmonic materials, e.g., noble metals, aluminum, silicon carbide, doped semiconductors, graphene, etc. The analysis provides guidance on how to improve the performance of any particular plasmonic application and substantially eases the selection of the plasmonic material.

[1]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[2]  A. Otto Excitation by light ofω+ andω− surface plasma waves in thin metal layers , 1969 .

[3]  隆夫 国府田,et al.  V. M. Agranovich and D. L. Mills 編: Surface Polaritons, Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam and New York, 1982, xvi+717ページ, 24.5×17cm, 38,350円 (Modern Problems in Condensed Matter Sciences, Vol. 1). , 1983 .

[4]  Pierre Berini,et al.  Figures of merit for surface plasmon waveguides. , 2006, Optics express.

[5]  A. Sommerfeld Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .

[6]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[7]  A. Boltasseva,et al.  A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.

[8]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[9]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[10]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[11]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[12]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[13]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[14]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[15]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[16]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[17]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[18]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[19]  G. Zhu,et al.  Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009 .

[20]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[21]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[22]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[23]  Y. Kivshar,et al.  Nonlinear plasmonic slot waveguides. , 2008, Optics express.

[24]  M. Orenstein,et al.  Negative dispersion: a backward wave or fast light? Nanoplasmonic examples. , 2009, Optics express.

[25]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[26]  Y. Kivshar,et al.  Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides , 2010 .

[27]  A. Boltasseva,et al.  Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[29]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[30]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[32]  M. Arnold,et al.  Designing materials for plasmonic systems: the alkali–noble intermetallics , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  P. Berini Long-range surface plasmon polaritons , 2009 .

[34]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[35]  V. Agranovich,et al.  Surface polaritons : electromagnetic waves at surfaces and interfaces , 1982 .

[36]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[37]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[38]  One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves , 2013, 1406.0099.

[39]  Jacob B Khurgin,et al.  Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011 .

[40]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[41]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[42]  T. Hildebrandt,et al.  Plasmon Confinement in Ultrathin Continuous Ag Films , 1999 .

[43]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[44]  A. D. Boardman,et al.  Electromagnetic surface modes , 1982 .

[45]  C. Soukoulis,et al.  Graphene for Terahertz Applications , 2013, Science.

[46]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[47]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[48]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[49]  J. Zenneck Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .

[50]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[51]  E. Palik,et al.  Optical Parameters for the Materials in HOC I and HOC II , 1997 .

[52]  E. Economou Surface Plasmons in Thin Films , 1969 .

[53]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[54]  D. Pile,et al.  Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .

[55]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[56]  Thomas Szkopek,et al.  Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. , 2007, Optics express.

[57]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[58]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[59]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[60]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[61]  Matthew C. Beard,et al.  Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy , 2000 .

[62]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.