A New Perspective on Plasmonics: Confinement and Propagation Length of Surface Plasmons for Different Materials and Geometries
暂无分享,去创建一个
Philippe Tassin | Costas M. Soukoulis | Thomas Koschny | Babak Dastmalchi | C. Soukoulis | T. Koschny | P. Tassin | B. Dastmalchi
[1] G. Vignale,et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.
[2] A. Otto. Excitation by light ofω+ andω− surface plasma waves in thin metal layers , 1969 .
[3] 隆夫 国府田,et al. V. M. Agranovich and D. L. Mills 編: Surface Polaritons, Electromagnetic Waves at Surfaces and Interfaces, North-Holland, Amsterdam and New York, 1982, xvi+717ページ, 24.5×17cm, 38,350円 (Modern Problems in Condensed Matter Sciences, Vol. 1). , 1983 .
[4] Pierre Berini,et al. Figures of merit for surface plasmon waveguides. , 2006, Optics express.
[5] A. Sommerfeld. Über die Ausbreitung der Wellen in der drahtlosen Telegraphie , 1909 .
[6] H. Miyazaki,et al. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.
[7] A. Boltasseva,et al. A comparative study of semiconductor-based plasmonic metamaterials , 2011, 1108.1531.
[8] V. Shalaev,et al. Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.
[9] Mark L. Brongersma,et al. Plasmonics: the next chip-scale technology , 2006 .
[10] N. Halas,et al. Nano-optics from sensing to waveguiding , 2007 .
[11] S. Maier,et al. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .
[12] Pierre Berini,et al. Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.
[13] Harry A. Atwater,et al. Low-Loss Plasmonic Metamaterials , 2011, Science.
[14] E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.
[15] H. Atwater,et al. Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).
[16] K. Catchpole,et al. Plasmonic solar cells. , 2008, Optics express.
[17] P. Kim,et al. Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.
[18] Vladimir M. Shalaev,et al. Searching for better plasmonic materials , 2009, 0911.2737.
[19] G. Zhu,et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications , 2009 .
[20] W. Cai,et al. Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.
[21] M. Stockman,et al. Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.
[22] M. Majewski,et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.
[23] Y. Kivshar,et al. Nonlinear plasmonic slot waveguides. , 2008, Optics express.
[24] M. Orenstein,et al. Negative dispersion: a backward wave or fast light? Nanoplasmonic examples. , 2009, Optics express.
[25] F. Xia,et al. Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.
[26] Y. Kivshar,et al. Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides , 2010 .
[27] A. Boltasseva,et al. Plasmonic Resonances in Nanostructured Transparent Conducting Oxide Films , 2012, IEEE Journal of Selected Topics in Quantum Electronics.
[28] R. V. Van Duyne,et al. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.
[29] D. Gramotnev,et al. Plasmonics beyond the diffraction limit , 2010 .
[30] Peter B Catrysse,et al. Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.
[31] Rupert F. Oulton,et al. Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .
[32] M. Arnold,et al. Designing materials for plasmonic systems: the alkali–noble intermetallics , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[33] P. Berini. Long-range surface plasmon polaritons , 2009 .
[34] E. Kretschmann. Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .
[35] V. Agranovich,et al. Surface polaritons : electromagnetic waves at surfaces and interfaces , 1982 .
[36] F. Koppens,et al. Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.
[37] R. W. Christy,et al. Optical Constants of the Noble Metals , 1972 .
[38] One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves , 2013, 1406.0099.
[39] Jacob B Khurgin,et al. Scaling of losses with size and wavelength in nanoplasmonics and metamaterials , 2011 .
[40] A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .
[41] Fouad Karouta,et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.
[42] T. Hildebrandt,et al. Plasmon Confinement in Ultrathin Continuous Ag Films , 1999 .
[43] Alexandra Boltasseva,et al. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .
[44] A. D. Boardman,et al. Electromagnetic surface modes , 1982 .
[45] C. Soukoulis,et al. Graphene for Terahertz Applications , 2013, Science.
[46] K. Kjaer,et al. Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.
[47] R. J. Bell,et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.
[48] H. Bechtel,et al. Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.
[49] J. Zenneck. Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie , 1907 .
[50] Nader Engheta,et al. Transformation Optics Using Graphene , 2011, Science.
[51] E. Palik,et al. Optical Parameters for the Materials in HOC I and HOC II , 1997 .
[52] E. Economou. Surface Plasmons in Thin Films , 1969 .
[53] M. Soljavci'c,et al. Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.
[54] D. Pile,et al. Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface , 2004 .
[55] W. Barnes,et al. Surface plasmon subwavelength optics , 2003, Nature.
[56] Thomas Szkopek,et al. Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs. , 2007, Optics express.
[57] A. Maradudin,et al. Nano-optics of surface plasmon polaritons , 2005 .
[58] William L. Barnes,et al. REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .
[59] E. Palik. Handbook of Optical Constants of Solids , 1997 .
[60] S. Maier. Plasmonics: Fundamentals and Applications , 2007 .
[61] Matthew C. Beard,et al. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy , 2000 .
[62] Min Seok Jang,et al. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.