Waveguide-coupled detector in zero-change complementary metal–oxide–semiconductor

We report a waveguide-coupled photodetector realized in a standard CMOS foundry without requiring changes to the process flow (zero-change CMOS). The photodetector exploits carrier generation in the silicon-germanium normally utilized as stressor in pFETs. The measured responsivity and 3 dB bandwidth are of 0.023 A/W at a wavelength of 1180 nm and 32 GHz at −1 V bias (18 GHz at 0 V bias). The dark current is less than 10 pA and the dynamic range is larger than 60 dB.

[1]  A. R. Moore,et al.  Intrinsic Optical Absorption in Germanium-Silicon Alloys , 1958 .

[2]  Sipe,et al.  Pressure dependence of the band gaps of semiconductors. , 1989, Physical review. B, Condensed matter.

[3]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[4]  D. Paul Si/SiGe heterostructures: from material and physics to devices and circuits , 2004 .

[5]  Donald M. Chiarulli,et al.  High-speed optoelectronics receivers in SiGe , 2004, 17th International Conference on VLSI Design. Proceedings..

[6]  A. Apsel,et al.  Low-cost, high-efficiency, and high-speed SiGe phototransistors in commercial BiCMOS , 2006, IEEE Photonics Technology Letters.

[7]  S. Narasimha,et al.  High Performance 45-nm SOI Technology with Enhanced Strain, Porous Low-k BEOL, and Immersion Lithography , 2006, 2006 International Electron Devices Meeting.

[8]  F. Gan,et al.  CMOS-Compatible All-Si High-Speed Waveguide Photodiodes With High Responsivity in Near-Infrared Communication Band , 2007, IEEE Photonics Technology Letters.

[9]  Jie Sun,et al.  Nanophotonic integration in state-of-the-art CMOS foundries. , 2011, Optics express.

[10]  Yurii A. Vlasov,et al.  Technologies for exascale systems , 2011, IBM J. Res. Dev..

[11]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[12]  Jie Sun,et al.  Open Foundry Platform for High-performance Electronic-photonic Integration References and Links , 2022 .

[13]  M. Casalino,et al.  Near-Infrared Sub-Bandgap All-Silicon Photodetectors: A Review , 2012, OPTICS 2012.

[14]  Min Yang,et al.  A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications , 2012, 2012 International Electron Devices Meeting.

[15]  Rajeev J Ram,et al.  Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS. , 2013, Optics letters.

[16]  Zabih Ghassemlooy,et al.  Optical Fiber Communication Conference, OFC 2014 , 2014, OFC 2015.

[17]  Aravind Srinivasan,et al.  A monolithically-integrated optical transmitter and receiver in a zero-change 45nm SOI process , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[18]  Dong-Hyun Kim,et al.  Bulk-Si photonics technology for DRAM interface [Invited] , 2014 .

[19]  Rajeev J Ram,et al.  Integration of silicon photonics in bulk CMOS , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[20]  Vladimir Stojanovic,et al.  Photonics design tool for advanced CMOS nodes , 2015, 1504.03669.