Vietoris-rips complexes also provide topologically correct reconstructions of sampled shapes

We associate with each compact set X of Rn two real-valued functions cX and hX defined on R+ which provide two measures of how much the set X fails to be convex at a given scale. First, we show that, when P is a finite point set, an upper bound on cP(t) entails that the Rips complex of P at scale r collapses to the Cech complex of P at scale r for some suitable values of the parameters t and r. Second, we prove that, when P samples a compact set X, an upper bound on hX over some interval guarantees a topologically correct reconstruction of the shape X either with a Cech complex of P or with a Rips complex of P. Regarding the reconstruction with Cech complexes, our work compares well with previous approaches when X is a smooth set and surprisingly enough, even improves constants when X has a positive μ-reach. Most importantly, our work shows that Rips complexes can also be used to provide topologically correct reconstruction of shapes. This may be of some computational interest in high dimensions.

[1]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[2]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[3]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..

[4]  Erin W. Chambers,et al.  Vietoris–Rips Complexes of Planar Point Sets , 2009, Discret. Comput. Geom..

[5]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[6]  Dominique Attali,et al.  r-regular shape reconstruction from unorganized points , 1997, SCG '97.

[7]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[8]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[9]  Vin de Silva,et al.  Topological approximation by small simplicial complexes , 2003 .

[10]  Jean-Daniel Boissonnat,et al.  A linear bound on the complexity of the delaunay triangulation of points on polyhedral surfaces , 2002, SMA '02.

[11]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[12]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[13]  F. Chazal,et al.  The λ-medial axis , 2005 .

[14]  André Lieutier,et al.  Efficient data structure for representing and simplifying simplicial complexes in high dimensions , 2011, SoCG '11.

[15]  Frédéric Chazal,et al.  Smooth manifold reconstruction from noisy and non-uniform approximation with guarantees , 2008, Comput. Geom..

[16]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[17]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2006, SCG '06.

[18]  Jean-Daniel Boissonnat,et al.  Complexity of the delaunay triangulation of points on surfaces the smooth case , 2003, SCG '03.

[19]  André Lieutier,et al.  Reconstructing shapes with guarantees by unions of convex sets , 2010, SCG.

[20]  Jean-Daniel Boissonnat,et al.  Incremental construction of the delaunay triangulation and the delaunay graph in medium dimension , 2009, SCG '09.

[21]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[22]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[23]  Jean-Daniel Boissonnat,et al.  Manifold Reconstruction Using Tangential Delaunay Complexes , 2010, Discrete & Computational Geometry.

[24]  André Lieutier,et al.  Any open bounded subset of Rn has the same homotopy type as its medial axis , 2004, Comput. Aided Des..

[25]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[26]  Olivier Devillers,et al.  Complexity of Delaunay triangulation for points on lower-dimensional polyhedra , 2007, SODA '07.

[27]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[28]  Afra Zomorodian,et al.  Computational topology , 2010 .

[29]  Vin de Silva,et al.  A weak characterisation of the Delaunay triangulation , 2008 .

[30]  K. Grove Critical point theory for distance functions , 1993 .

[31]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[32]  Afra Zomorodian,et al.  Fast construction of the Vietoris-Rips complex , 2010, Comput. Graph..

[33]  J. Hausmann On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces , 1996 .

[34]  Afra Zomorodian,et al.  The tidy set: a minimal simplicial set for computing homology of clique complexes , 2010, SCG.

[35]  J. Latschev Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold , 2001 .

[36]  Herbert Edelsbrunner,et al.  Triangulating topological spaces , 1994, SCG '94.

[37]  Elias Gabriel Minian,et al.  Strong Homotopy Types, Nerves and Collapses , 2009, Discret. Comput. Geom..