CONTINUED NEUTRON STAR CRUST COOLING OF THE 11 Hz X-RAY PULSAR IN TERZAN 5: A CHALLENGE TO HEATING AND COOLING MODELS?

The transient neutron star low-mass X-ray binary and 11 Hz X-ray pulsar IGR J17480–2446 in the globular cluster Terzan 5 exhibited an 11 week accretion outburst in 2010. Chandra observations performed within five months after the end of the outburst revealed evidence that the crust of the neutron star became substantially heated during the accretion episode and was subsequently cooling in quiescence. This provides the rare opportunity to probe the structure and composition of the crust. Here, we report on new Chandra observations of Terzan 5 that extend the monitoring to ≃2.2 yr into quiescence. We find that the thermal flux and neutron star temperature have continued to decrease, but remain significantly above the values that were measured before the 2010 accretion phase. This suggests that the crust has not thermally relaxed yet, and may continue to cool. Such behavior is difficult to explain within our current understanding of heating and cooling of transiently accreting neutron stars. Alternatively, the quiescent emission may have settled at a higher observed equilibrium level (for the same interior temperature), in which case the neutron star crust may have fully cooled.

[1]  R. Wijnands,et al.  A DIRECT MEASUREMENT OF THE HEAT RELEASE IN THE OUTER CRUST OF THE TRANSIENTLY ACCRETING NEUTRON STAR XTE J1709−267 , 2012, 1212.1453.

[2]  Barcelona,et al.  The near-IR counterpart of IGR J17480-2446 in Terzan 5 , 2012, 1210.8261.

[3]  R. Wijnands,et al.  Testing the deep-crustal heating model using quiescent neutron-star very-faint X-ray transients and the possibility of partially accreted crusts in accreting neutron stars , 2012, 1208.4273.

[4]  A. Patruno,et al.  THE PECULIAR EVOLUTIONARY HISTORY OF IGR J17480-2446 IN TERZAN 5 , 2011, 1112.5315.

[5]  L. Keek,et al.  MILLIHERTZ QUASI-PERIODIC OSCILLATIONS AND THERMONUCLEAR BURSTS FROM TERZAN 5: A SHOWCASE OF BURNING REGIMES , 2011, 1111.3978.

[6]  R. Wijnands,et al.  Evidence for crust cooling in the transiently accreting 11-Hz X-ray pulsar in the globular cluster Terzan 5 , 2011, 1107.5317.

[7]  A. Parmar,et al.  XMM-Newton observations of the low-mass X-ray binary EXO 0748-676 in quiescence , 2011, 1102.2640.

[8]  Y. Levin,et al.  IMPLICATIONS OF BURST OSCILLATIONS FROM THE SLOWLY ROTATING ACCRETING PULSAR IGR J17480−2446 IN THE GLOBULAR CLUSTER TERZAN 5 , 2011, 1102.1548.

[9]  E. Cackett,et al.  A FAST X-RAY DISK WIND IN THE TRANSIENT PULSAR IGR J17480−2446 IN TERZAN 5 , 2011, 1101.2377.

[10]  E. Cackett,et al.  THE VARIABLE QUIESCENT X-RAY EMISSION OF THE TRANSIENT NEUTRON STAR XTE J1701−462 , 2010, 1101.0081.

[11]  L. Burderi,et al.  The spin and orbit of the newly discovered pulsar IGR J17480-2446 , 2010, 1010.4793.

[12]  E. Cackett,et al.  CONTINUED COOLING OF THE CRUST IN THE NEUTRON STAR LOW-MASS X-RAY BINARY KS 1731−260 , 2010, 1008.4727.

[13]  Kinwah Wu,et al.  X-ray study of HLX1: intermediate-mass black hole or foreground neutron star? , 2010, 1008.3382.

[14]  L. Finn,et al.  Pulsar timing array observations of gravitational wave source timing parallax , 2010, 1008.0320.

[15]  E. Cackett,et al.  QUIESCENT X-RAY EMISSION FROM Cen X-4: A VARIABLE THERMAL COMPONENT , 2010, 1007.2823.

[16]  K. Wood,et al.  Further X‐ray observations of EXO 0748−676 in quiescence: evidence for a cooling neutron star crust , 2010, 1007.0247.

[17]  Massachusetts Institute of Technology,et al.  DISCOVERY OF A 552 Hz BURST OSCILLATION IN THE LOW-MASS X-RAY BINARY EXO 0748−676 , 2009, 0910.5546.

[18]  U. Cambridge,et al.  ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES , 2009, 0910.2877.

[19]  D. Kaplan,et al.  MAGNETIC FIELD-DECAY-INDUCED ELECTRON CAPTURES: A STRONG HEAT SOURCE IN MAGNETAR CRUSTS , 2009, 0910.2466.

[20]  E. Cackett,et al.  RAPID COOLING OF THE NEUTRON STAR IN THE QUIESCENT SUPER-EDDINGTON TRANSIENT XTE J1701−462 , 2009, 1003.3460.

[21]  A. Cumming,et al.  MAPPING CRUSTAL HEATING WITH THE COOLING LIGHT CURVES OF QUASI-PERSISTENT TRANSIENTS , 2009, 0901.3115.

[22]  U. Geppert,et al.  Magneto-thermal evolution of neutron stars , 2008, 0812.3018.

[23]  K. Wood,et al.  Chandra and Swift observations of the quasi-persistent neutron star transient EXO 0748−676 back to quiescence , 2008, 0811.4582.

[24]  E. Cackett,et al.  Cooling of the Crust in the Neutron Star Low-Mass X-Ray Binary MXB 1659–29 , 2008, 0806.1166.

[25]  M. Bejger,et al.  Fast rotation of neutron stars and equation of state of dense matter. , 2008, 0805.1820.

[26]  D. Aguilera,et al.  The Impact of Magnetic Field on the Thermal Evolution of Neutron Stars , 2007, 0712.1353.

[27]  Warsaw,et al.  Neutron star cooling after deep crustal heating in the X-ray transient KS 1731–260 , 2007, 0708.0086.

[28]  S. Ortolani,et al.  Distances of the bulge globular clusters Terzan 5, Liller 1, UKS 1, and Terzan 4 based on HST NICMOS photometry , 2007, 0705.4030.

[29]  K. Kratz,et al.  HEATING IN THE ACCRETED NEUTRON STAR OCEAN: IMPLICATIONS FOR SUPERBURST IGNITION , 2022 .

[30]  R. Wijnands,et al.  Faint X-Ray Sources in the Globular Cluster Terzan 5 , 2006, astro-ph/0606253.

[31]  G. Rybicki,et al.  A Hydrogen Atmosphere Spectral Model Applied to the Neutron Star X7 in the Globular Cluster 47 Tucanae , 2005, astro-ph/0506563.

[32]  R. Wijnands,et al.  Monitoring Chandra Observations of the Quasi-persistent Neutron Star X-Ray Transient MXB 1659–29 in Quiescence: The Cooling Curve of the Heated Neutron Star Crust , 2003, astro-ph/0310612.

[33]  L. Stella,et al.  The Evolution of the High-Energy Tail in the Quiescent Spectrum of the Soft X-Ray Transient Aquila X-1 , 2003, astro-ph/0307218.

[34]  Robert E. Rutledge,et al.  Variable Thermal Emission from Aquila X-1 in Quiescence , 2002, astro-ph/0204196.

[35]  L. Bildsten,et al.  Variability in the Thermal Emission from Accreting Neutron Star Transients , 2002, astro-ph/0204102.

[36]  R. Wijnands,et al.  XMM-Newton Observations of the Neutron Star X-Ray Transient KS 1731–260 in Quiescence , 2002, astro-ph/0202398.

[37]  L. Bildsten,et al.  Crustal Emission and the Quiescent Spectrum of the Neutron Star in KS 1731–260 , 2001, astro-ph/0108125.

[38]  R. Rutledge,et al.  Time-variable emission from transiently accreting neutron stars in quiescence due to deep crustal heating , 2001, astro-ph/0101141.

[39]  M. Colpi,et al.  Charting the Temperature of the Hot Neutron Star in a Soft X-Ray Transient , 2000, astro-ph/0010572.

[40]  R. Wijnands,et al.  Discovery of Nearly Coherent Oscillations with a Frequency of ~567 Hz during Type I X-Ray Bursts of the X-Ray Transient and Eclipsing Binary X1658–298 , 2000, astro-ph/0008526.

[41]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[42]  L. Bildsten,et al.  Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars , 1998, astro-ph/9807179.

[43]  E. Morgan,et al.  Rossi X-Ray Timing Explorer Discovery of Coherent Millisecond Pulsations during an X-Ray Burst from KS 1731–260 , 1996, astro-ph/9612221.

[44]  G. Ferland,et al.  Atomic data for astrophysics. II. New analytic fits for photoionization cross sections of atoms and ions , 1996, astro-ph/9601009.

[45]  A. Treves,et al.  X-Ray Spectra from Neutron Stars Accreting at Low Rates , 1994, astro-ph/9407067.

[46]  C. Pethick,et al.  Neutron star crusts. , 1993, Physical review letters.

[47]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[48]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .