Passive microwave spectral imaging with dynamic metasurface apertures

Passive microwave imaging of incoherent sources is often approached in a lensless configuration through array-based interferometric processing. We present an alternative route in the form of a coded aperture realized using a dynamic metasurface. We demonstrate that this device can achieve an estimate of the spectral source distribution from a series of single-port spectral magnitude measurements and complex characterization of the modulation patterns. The image estimation problem is formulated in this case as compressive inversion of a set of standard linear matrix equations. In addition, we demonstrate that a dispersive metasurface design can achieve spectral encoding directly, offering the potential for spectral imaging from frequency-integrated, multiplexed measurements. The microwave dynamic metasurface aperture as an encoding structure is shown to comprise a substantially simplified hardware architecture than that employed in common passive microwave imaging systems. Our proposed technique can facilitate large scale microwave imaging applications that exploit pervasive ambient sources, while similar principles can readily be applied at terahertz, infrared, and optical frequencies.

[1]  David R. Smith,et al.  Comprehensive simulation platform for a metamaterial imaging system. , 2015, Applied optics.

[2]  David R Smith,et al.  Phaseless computational ghost imaging at microwave frequencies using a dynamic metasurface aperture. , 2018, Applied optics.

[3]  A. Walther Radiometry and coherence , 1968 .

[4]  Thomas Fromenteze,et al.  Computational polarimetric microwave imaging. , 2017, Optics express.

[5]  J. Bertolotti,et al.  Non-invasive imaging through opaque scattering layers , 2012, Nature.

[6]  E. Wolf,et al.  Coherent-mode representation of Gaussian Schell-model sources and of their radiation fields , 1982 .

[7]  David R. Smith,et al.  Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling , 2017 .

[8]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[9]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[10]  Jesse N. Clark,et al.  Dynamic imaging using ptychography. , 2014, Physical review letters.

[11]  David R. Smith,et al.  Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures. , 2016, Optics express.

[12]  H. Chapman Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution , 1996 .

[13]  Michael Boyarsky,et al.  Review of Metasurface Antennas for Computational Microwave Imaging , 2020, IEEE Transactions on Antennas and Propagation.

[14]  E. Wolf Coherence and radiometry , 1978 .

[15]  David R. Smith,et al.  Homogenization analysis of complementary waveguide metamaterials , 2013 .

[16]  Benjamin Fuchs,et al.  Computational passive imaging of thermal sources with a leaky chaotic cavity , 2017 .

[17]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[18]  David R. Smith,et al.  Efficient complementary metamaterial element for waveguide-fed metasurface antennas. , 2016, Optics express.

[19]  Vincent Fusco,et al.  Frequency-Diverse Computational Direction of Arrival Estimation Technique , 2019, Scientific Reports.

[20]  A. Yaghjian An overview of near-field antenna measurements , 1986 .

[21]  Can Evren Yarman,et al.  Synthetic Aperture Hitchhiker Imaging , 2008, IEEE Transactions on Image Processing.

[22]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[23]  Aggelos K. Katsaggelos,et al.  Passive millimeter-wave imaging with compressive sensing , 2012 .

[24]  Amin M. Abbosh,et al.  Microwave System for Head Imaging , 2014, IEEE Transactions on Instrumentation and Measurement.

[25]  D. Brady,et al.  Astigmatic coherence sensor for digital imaging. , 2000, Optics letters.

[26]  Jianfei Chen,et al.  AN ACCURATE IMAGING ALGORITHM FOR MILLIMETER WAVE SYNTHETIC APERTURE IMAGING RADIOMETER IN NEAR-FIELD , 2013 .

[27]  David R. Smith,et al.  Two-Dimensional Dynamic Metasurface Apertures for Computational Microwave Imaging , 2018, IEEE Antennas and Wireless Propagation Letters.

[28]  L. Tian,et al.  Experimental compressive phase space tomography , 2011, Optics express.

[29]  David R. Smith,et al.  Dynamic metamaterial aperture for microwave imaging , 2015 .

[30]  T. Schmugge,et al.  Passive microwave remote sensing system for soil moisture: some supporting research , 1989 .

[31]  Ettien Kpré,et al.  Computational Imaging for Compressive Synthetic Aperture Interferometric Radiometer , 2018, IEEE Transactions on Antennas and Propagation.

[32]  Michael E. Gehm,et al.  Single-shot multispectral imaging through a thin scatterer , 2019, Optica.

[33]  Michael Boyarsky,et al.  Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements , 2017 .

[34]  Fatal traumatic brain injuries during 13 years of successive alcohol tax increases in Finland – a nationwide population-based registry study , 2019, Scientific Reports.

[35]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[36]  Tero Setälä,et al.  Temporal ghost imaging with classical non-stationary pulsed light , 2010 .

[37]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[38]  Nugent Wave field determination using three-dimensional intensity information. , 1992, Physical review letters.

[39]  Henry Arguello,et al.  Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.

[40]  Tsung-Han Tsai,et al.  Single-sensor multispeaker listening with acoustic metamaterials , 2015, Proceedings of the National Academy of Sciences.

[41]  David R. Smith,et al.  Spatially resolving antenna arrays using frequency diversity. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[42]  C. Ruf,et al.  Interferometric synthetic aperture microwave radiometry for the remote sensing of the Earth , 1988 .

[43]  A. Friberg,et al.  Theory of partially coherent electromagnetic fields in the space-frequency domain. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  M. Peichl,et al.  Passive microwave remote sensing for security applications , 2007, 2007 European Radar Conference.

[45]  Stephen J. Norton,et al.  Backprojection reconstruction of random source distributions , 1987 .

[46]  Joseph W. Goodman,et al.  Reconstructions of images of partially coherent objects from samples of mutual intensity , 1977 .

[47]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[48]  Dennis W. Prather,et al.  Passive Three-Dimensional Spatial-Spectral Analysis Based on k-Space Tomography , 2018, IEEE Photonics Technology Letters.

[49]  Cyril Decroze,et al.  Passive Coding Technique Applied to Synthetic Aperture Interferometric Radiometer , 2017, IEEE Geoscience and Remote Sensing Letters.

[50]  Ioannis N. Papadopoulos,et al.  The generalized optical memory effect , 2017, 1705.01373.

[51]  Zuowei Shen,et al.  Coherence Retrieval Using Trace Regularization , 2017, SIAM J. Imaging Sci..

[52]  Neil A. Salmon,et al.  3-D Radiometric Aperture Synthesis Imaging , 2015, IEEE Transactions on Microwave Theory and Techniques.

[53]  Jeffrey H. Shapiro,et al.  Computational ghost imaging , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[54]  David R. Smith,et al.  Temporal microwave ghost imaging using a reconfigurable disordered cavity , 2020 .

[55]  Jeffrey A. Nanzer,et al.  Microwave Imaging Using Noise Signals , 2018, IEEE Transactions on Microwave Theory and Techniques.

[56]  D. Brady,et al.  Three-dimensional coherence imaging in the Fresnel domain. , 1999, Applied optics.

[57]  David R. Smith,et al.  Computational imaging using a mode-mixing cavity at microwave frequencies , 2015 .

[58]  Paul S. Idell,et al.  Imaging Correlography With Sparse Arrays Of Detectors , 1988 .

[59]  On refocusing a radio telescope to image sources in the near field of the antenna array , 1989 .

[60]  David R. Smith,et al.  Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures , 2018, Optica.