Glutathione-Capped ZnS Quantum Dots-Urease Conjugate as a Highly Sensitive Urea Probe

[1]  S. Ebrahim,et al.  High Photoluminescence Polyindole/CuInS Quantum Dots for Pb Ions Sensor , 2022, Journal of Inorganic and Organometallic Polymers and Materials.

[2]  P. Nagaraju,et al.  Synthesis and characterization of ZnS-based quantum dots to trace low concentration of ammonia , 2021, Journal of Semiconductors.

[3]  H. Nemade,et al.  Non-Enzymatic Urea Sensing Based on MWCNT Nanocomposite , 2021, IEEE Sensors Journal.

[4]  M. Soliman,et al.  Nanocomposite of CuInS/ZnS and Nitrogen-Doped Graphene Quantum Dots for Cholesterol Sensing , 2021, ACS omega.

[5]  M. Soliman,et al.  Room temperature synthesis of aqueous ZnCuInS/ZnS quantum dots , 2020, Journal of Dispersion Science and Technology.

[6]  M. Soliman,et al.  Polyaniline/Ag nanoparticles/graphene oxide nanocomposite fluorescent sensor for recognition of chromium (VI) ions , 2020, Scientific Reports.

[7]  V. G. Pahurkar,et al.  PANI-ZnO Cladding-Modified Optical Fiber Biosensor for Urea Sensing Based on Evanescent Wave Absorption , 2020, Frontiers in Materials.

[8]  Guangzhi Zhang,et al.  Effects of L-cysteine on the photoluminescence, electronic and cytotoxicity properties of ZnS:O quantum dots , 2020 .

[9]  K. Hussain,et al.  Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. , 2019, Biosensors & bioelectronics.

[10]  Tao Huang,et al.  Preparation and Fluorescence Property of Water-dispersible ZnSe:Co/ZnSe/ZnS Quantum Dots , 2018, IOP Conference Series: Materials Science and Engineering.

[11]  H. Ezzaouia,et al.  Solution flow rate influence on ZnS thin films properties grown by ultrasonic spray for optoelectronic application , 2018, Journal of Semiconductors.

[12]  Medhat A. Haroun,et al.  Self‐assembled amphiphilic zein‐lactoferrin micelles for tumor targeted co‐delivery of rapamycin and wogonin to breast cancer , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[13]  Peng Miao,et al.  One-pot synthesis of GSH-Capped CdTe quantum dots with excellent biocompatibility for direct cell imaging , 2018, Heliyon.

[14]  Hyung‐Ho Park,et al.  Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress , 2017 .

[15]  M. Arvand,et al.  Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. , 2017, Biosensors & bioelectronics.

[16]  A. Baranov,et al.  Application of semiconductor quantum dots in bioimaging and biosensing. , 2017, Journal of materials chemistry. B.

[17]  Moataz Soliman,et al.  Graphene quantum dots prepared from glucose as optical sensor for glucose , 2017 .

[18]  T. Ling,et al.  Fluorescence bioanalytical method for urea determination based on water soluble ZnS quantum dots , 2017 .

[19]  Bibek Thapa,et al.  L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. , 2017, Biosensors & bioelectronics.

[20]  Jiyang Fan,et al.  Optical spectroscopy reveals transition of CuInS2/ZnS to CuxZn1−xInS2/ZnS:Cu alloyed quantum dots with resultant double-defect luminescence , 2016 .

[21]  M. K. Rofouei,et al.  A quantum dot-based fluorescence sensor for sensitive and enzymeless detection of creatinine , 2016 .

[22]  Ya-xian Zhu,et al.  Glutathione-capped Mn-doped ZnS quantum dots as a room-temperature phosphorescence sensor for the detection of Pb(2+) ions. , 2016, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[23]  H. Rajabi,et al.  Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots , 2016 .

[24]  H. Rajabi,et al.  Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: Synthesis, characterization, and application for dye decolorization , 2015 .

[25]  L. Tang,et al.  Highly sensitive enzymatic determination of urea based on the pH-dependence of the fluorescence of graphene quantum dots , 2015, Microchimica Acta.

[26]  K. Mukai Semiconductor quantum dots for future optical applications. , 2014, Journal of nanoscience and nanotechnology.

[27]  X. Su,et al.  Dopamine functionalized CuInS2 quantum dots as a fluorescence probe for urea , 2014 .

[28]  Penghui Zhang,et al.  Highly luminescent glutathione-capped ZnS : Mn/ZnS core/shell doped quantum dots for targeted mannosyl groups expression on the cell surface† , 2013 .

[29]  A. Rahdar,et al.  Effect of 2-mercaptoethanol as capping agent on ZnS nanoparticles: structural and optical characterization , 2013, Journal of Nanostructure in Chemistry.

[30]  P. Sagayaraj,et al.  Investigation on one-pot hydrothermal synthesis, structural and optical properties of ZnS quantum dots , 2013 .

[31]  Dudu Wu,et al.  ZnS quantum dots as pH probes for study of enzyme reaction kinetics. , 2012, Enzyme and microbial technology.

[32]  Ahmet Koyun,et al.  Biosensors and Their Principles , 2012 .

[33]  Feng Yan,et al.  Semiconductor Quantum Dots for Biomedicial Applications , 2011, Sensors.

[34]  Warren C W Chan,et al.  Principles of conjugating quantum dots to proteins via carbodiimide chemistry , 2011, Nanotechnology.

[35]  Lingxin Chen,et al.  Quantum dots, lighting up the research and development of nanomedicine. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[36]  Mayur Sadawana,et al.  An optimized quantum dot-ligand system for biosensing applications: Evaluation as a glucose biosensor , 2011 .

[37]  E. Hall,et al.  Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine. , 2010, Analytical chemistry.

[38]  Waqas Khalid,et al.  Quantum-dot-modified electrode in combination with NADH-dependent dehydrogenase reactions for substrate analysis. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[39]  R. Renganathan,et al.  Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. , 2009, Colloids and surfaces. B, Biointerfaces.

[40]  Jun-sheng Yu,et al.  Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: the effect of ligands. , 2009, Journal of colloid and interface science.

[41]  Zhiyong Tang,et al.  Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[42]  A. Saha,et al.  Conformation and activity dependent interaction of glucose oxidase with CdTequantum dots: towards developing a nanoparticle based enzymatic assay , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[43]  Qin Guo,et al.  Recent Advances in Nanotechnology Applied to Biosensors , 2009, Sensors.

[44]  Vojtech Adam,et al.  Quantum Dots — Characterization, Preparation and Usage in Biological Systems , 2009, International journal of molecular sciences.

[45]  Y. Tachibana,et al.  Quantum dot sensitized solar cells , 2008, 2008 2nd IEEE International Nanoelectronics Conference.

[46]  Weibo Cai,et al.  Are quantum dots ready for in vivo imaging in human subjects? , 2007, Nanoscale research letters.

[47]  Huey-Ing Chen,et al.  Morphological evolution for CeO2 nanoparticles synthesized by precipitation technique , 2005 .

[48]  Robert Koncki,et al.  Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis. , 2004, Talanta.

[49]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[50]  I. Vijay,et al.  A method for the high efficiency of water-soluble carbodiimide-mediated amidation. , 1994, Analytical biochemistry.

[51]  S. Langton,et al.  Kinetic properties of Helicobacter pylori urease compared with jack bean urease. , 1992, FEMS microbiology letters.

[52]  F. Rebentrost,et al.  Sensitization of charge injection into semiconductors with large band gap , 1968 .

[53]  D. B. Hand,et al.  THE ISOELECTRIC POINT OF CRYSTALLINE UREASE1 , 1929 .

[54]  S. Ganesan,et al.  N-Doped zinc oxide as an effective fluorescence sensor for urea detection , 2021 .

[55]  A. Shukla EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials , 2017 .

[56]  Antje Sommer,et al.  Principles Of Fluorescence Spectroscopy , 2016 .

[57]  Reza Kazemi-Darsanaki,et al.  Biosensors: Functions and Applications , 2013 .

[58]  S. Suye,et al.  A Fluorometric Determination of Urea With Urease , 1999 .

[59]  John E. Ayers,et al.  The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction , 1994 .

[60]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[61]  G. K. Williamson,et al.  X-ray line broadening from filed aluminium and wolfram , 1953 .