Vision Controlled Humanoid Robot Tool-Kit

This paper introduces a novel parallelised vision based intelligent controller for a Humanoid Robot system. This intelligent controller is simulated dynamically and its performance evaluated for a standard benchmark problem. The parallel nature of the simulation architecture which can separate the image processing and control algorithms allows the simulation to progress in real-time or faster than real-time. This allows automated control algorithms using neural network or evolutionary algorithms to be efficiently and effectively developed.

[1]  Günther Schmidt,et al.  Practical Experience with Vision-guided Biped Walking , 2002, ISER.

[2]  Keiichiro Hoashi,et al.  Humanoid Robots in Waseda University—Hadaly-2 and WABIAN , 2002, Auton. Robots.

[3]  I. Shimoyama,et al.  Dynamic Walk of a Biped , 1984 .

[4]  J. Pratt,et al.  Exploiting Natural Dynamics in the Control of a 3 D Bipedal Walking Simulation , 1999 .

[5]  Jong Hyeon Park,et al.  Impedance control for biped robot locomotion , 2001, IEEE Trans. Robotics Autom..

[6]  Changjiu Zhou,et al.  Dynamic balance of a biped robot using fuzzy reinforcement learning agents , 2003, Fuzzy Sets Syst..

[7]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[8]  Rolf Hempel,et al.  The MPI Message Passing Interface Standard , 1994 .

[9]  Jerry E. Pratt,et al.  Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots , 2000 .

[10]  Roy Featherstone,et al.  A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 2: Trees, Loops, and Accuracy , 1999, Int. J. Robotics Res..

[11]  Gourab Sen Gupta,et al.  State transition based supervisory control for a robot soccer system , 2002, Proceedings First IEEE International Workshop on Electronic Design, Test and Applications '2002.

[12]  C. Shih The dynamics and control of a biped walking robot with seven degrees of freedom , 1996 .

[13]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[14]  Jerry E. Pratt,et al.  Intuitive control of a planar bipedal walking robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[15]  Masahiro Fujita,et al.  Motion entertainment by a small humanoid robot based on OPEN-R , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[16]  Z. Li Strategies for biped gymnastics , 1989, Proceedings. IEEE International Symposium on Intelligent Control 1989.

[17]  Masayuki Inaba,et al.  Rapid development system for humanoid vision-based behaviors with real-virtual common interface , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Rodney A. Brooks,et al.  Humanoid robots , 2002, CACM.

[19]  Roy Featherstone,et al.  A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm , 1999, Int. J. Robotics Res..

[20]  H. Benjamin Brown,et al.  Experiments in Balance with a 3D One-Legged Hopping Machine , 1984 .

[21]  Gourab Sen Gupta,et al.  Size/position identification in real-time image processing using run length encoding , 2002, IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276).

[22]  Ruixiang Zhang,et al.  Motion Planning of Biped Robot Climbing Stairs , 2003 .