An Approach to Control of Human Leg Switched Dynamics

This article describes the approach to control of human leg dynamical model as a switched linear system. The control scheme consists of fractional and integral order PID controllers. In the paper we analyze the responses of the system depending on the above-mentioned controllers. We focus our attention on angular displacements only. The angular velocity maybe arbitrary. Additionally, we present the method how to design a human leg as the switched linear system. In this case the switching rule is state-dependent. Finally, we present two illustrative examples for two different trajectories.

[1]  Eduard Petlenkov,et al.  FOMCON: Fractional-order modeling and control toolbox for MATLAB , 2011, Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011.

[2]  Jerzy Klamka,et al.  Controllability of switched infinite-dimensional linear dynamical systems , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[3]  Stefan Schaal,et al.  From dynamic movement primitives to associative skill memories , 2013, Robotics Auton. Syst..

[4]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[5]  André R. Fioravanti,et al.  PID controller design for fractional-order systems with time delays , 2012, Syst. Control. Lett..

[6]  F. Mainardi,et al.  Recent history of fractional calculus , 2011 .

[7]  Arturo Rojas Moreno,et al.  Fractional Order PD and PID Position Control of an Angular Manipulator of 3DOF , 2013 .

[8]  Rey-Chue Hwang,et al.  A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach , 2002 .

[9]  Qing-Guo Wang,et al.  Auto-tuning of multivariable PID controllers from decentralized relay feedback , 1997, Autom..

[10]  Joel C. Perry,et al.  Upper Limb Powered Exoskeleton , 2007, Int. J. Humanoid Robotics.

[11]  Jerzy Klamka,et al.  Controllability of switched linear dynamical systems , 2013, 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR).

[12]  Alain Oustaloup,et al.  Fractional system identification for lead acid battery state of charge estimation , 2006, Signal Process..

[13]  Jerzy Klamka,et al.  An approach to observability analysis and estimation of human arm model , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[14]  Ken Jackson,et al.  Modeling and Simulation of Skeletal Muscle for Computer Graphics: A Survey , 2012, Found. Trends Comput. Graph. Vis..

[15]  Su Whan Sung,et al.  Comparison of two identification methods for PID controller tuning , 1993 .

[16]  Jim Euchner Design , 2014, Catalysis from A to Z.

[17]  Eduard Petlenkov,et al.  Efficient analog implementations of fractional-order controllers , 2013, Proceedings of the 14th International Carpathian Control Conference (ICCC).

[18]  Jerzy Klamka,et al.  Stability and controllability of switched systems , 2013 .

[19]  Manuel Duarte Ortigueira,et al.  Complex Grünwald–Letnikov, Liouville, Riemann–Liouville, and Caputo derivatives for analytic functions , 2011 .

[20]  Eizo Miyashita,et al.  Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement , 2014, IEEE Transactions on Industrial Electronics.

[21]  Jerzy Klamka,et al.  The selected problems of controllability of discrete-time switched linear systems with constrained switching rule , 2015 .

[22]  Sadao Kawamura,et al.  Inverse Dynamics of Human Passive Motion Based on Iterative Learning Control , 2012, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[23]  Jerzy Klamka,et al.  Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems , 2014, 11th IEEE International Conference on Control & Automation (ICCA).

[24]  Weiwei Li Optimal control for biological movement systems , 2006 .

[25]  Vahid Badri,et al.  On tuning fractional order [proportional-derivative] controllers for a class of fractional order systems , 2013, Autom..

[26]  S. Das Functional Fractional Calculus , 2011 .

[27]  Mihailo Lazarevi Mechanics of Human Locomotor System , 2006 .

[28]  Tore Hägglund,et al.  Automatic tuning of simple regulators with specifications on phase and amplitude margins , 1984, Autom..

[29]  Tom T. Hartley,et al.  Fractional-order system identification based on continuous order-distributions , 2003, Signal Process..

[30]  Bin Dai,et al.  On lateral fractional order controller in auto-parking system , 2011, Proceedings of the 30th Chinese Control Conference.

[31]  Yaping Wang,et al.  Design, modeling and simulation of the human lower extremity exoskeleton , 2008, 2008 Chinese Control and Decision Conference.

[32]  K. Saravanan,et al.  Design of Fractional Order PID controller for liquid level control of spherical tank , 2011, 2011 IEEE International Conference on Control System, Computing and Engineering.

[33]  Jerzy Klamka,et al.  Trajectory Controllability of Semilinear Systems with Delay , 2015, ACIIDS.

[34]  YangQuan Chen,et al.  Numerical Issues and MATLAB Implementations for Fractional-order Control Systems , 2010 .

[35]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[36]  Ferdinand Svaricek,et al.  Fractional order PID controller (FOPID)-Toolbox , 2013, 2013 European Control Conference (ECC).

[37]  Artur Babiarz,et al.  Mathematical model of a human leg: The switched linear system approach , 2015, 2015 International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS).

[38]  Yogesh V. Hote,et al.  Fractional order PID controller for load frequency control , 2014 .

[39]  Izaskun Garrido Hernandez,et al.  ASTRA — Matlab integration for the control of tokamaks , 2009, 2009 IEEE International Conference on Control and Automation.

[40]  Hai Qun Wang,et al.  The Frequency Research of Fractional Order PIλDμ Controller , 2013 .

[41]  M. G. Sevillano,et al.  SLIDING-MODE LOOP VOLTAGE CONTROL USING ASTRA-MATLAB INTEGRATION IN TOKAMAK REACTORS , 2012 .

[42]  Jerzy Klamka,et al.  Dynamics Modeling of 3D Human Arm Using Switched Linear Systems , 2015, ACIIDS.

[43]  Reyad El-Khazali,et al.  Fractional-order PIλDμ controller design , 2013, Comput. Math. Appl..

[44]  Koksal Erenturk,et al.  Fractional-Order $\hbox{PI}^{\lambda}\hbox{D}^{\mu}$ and Active Disturbance Rejection Control of Nonlinear Two-Mass Drive System , 2013, IEEE Transactions on Industrial Electronics.

[45]  Xiaohui Yuan,et al.  Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II , 2014 .

[46]  Saptarshi Das,et al.  Intelligent Fractional Order Systems and Control - An Introduction , 2012, Studies in Computational Intelligence.

[47]  I. Petras,et al.  The fractional - order controllers: Methods for their synthesis and application , 2000, math/0004064.

[48]  Tore Hägglund,et al.  Industrial adaptive controllers based on frequency response techniques , 1991, Autom..

[49]  Jerzy Klamka,et al.  Controllability of Discrete-Time Linear Switched Systems with Constrains on Switching Signal , 2015, ACIIDS.

[50]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[51]  Jerzy Klamka,et al.  The mathematical model of the human arm as a switched linear system , 2014, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).

[52]  M. Nakamura,et al.  Compensation of hand movement for patients by assistant force: relationship between human hand movement and robot arm motion , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[53]  A. Czornik,et al.  On the spectrum of discrete time-varying linear systems , 2013 .

[54]  Reza Olfati-Saber,et al.  Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles , 2001 .

[55]  Krzysztof Jaskot,et al.  The dynamics of the human arm with an observer for the capture of body motion parameters , 2013 .

[56]  Inés Tejado,et al.  Fractional Order Human Arm Dynamics With Variability Analyses , 2013 .

[57]  Jianfei Huang,et al.  The Grünwald-Letnikov method for fractional differential equations , 2011, Comput. Math. Appl..

[58]  Eduard Petlenkov,et al.  Design and implementation of fractional-order PID controllers for a fluid tank system , 2013, 2013 American Control Conference.

[59]  Amit Konar,et al.  A Study of the Grunwald-Letnikov Definition for Minimizing the Effects of Random Noise on Fractional Order Differential Equations , 2008, 2008 4th International Conference on Information and Automation for Sustainability.

[60]  Marcus A. Magnor,et al.  Capture and Statistical Modeling of Arm‐Muscle Deformations , 2013, Comput. Graph. Forum.

[61]  E. Fiume,et al.  A Survey of Modeling and Simulation of Skeletal Muscle , 2010 .

[62]  T. Poinot,et al.  Identification of Fractional Systems Using an Output-Error Technique , 2004 .

[63]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[64]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[65]  Artur Babiarz On mathematical modelling of the human arm using switched linear system , 2014 .

[66]  Arturo Rojas Moreno,et al.  Fractional Order PD and PID Position Control of an Angular Manipulator of 3DOF , 2013, 2013 Latin American Robotics Symposium and Competition.

[67]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[68]  Ravi Kumar Jatoth,et al.  Design of intelligent PID/PIλDμ speed controller for chopper fed DC motor drive using opposition based artificial bee colony algorithm , 2014, Eng. Appl. Artif. Intell..

[69]  J Ljubisa Bucanovic,et al.  The fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process , 2014 .

[70]  Adam Czornik,et al.  Controllability and stability of switched systems , 2013, 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR).

[71]  Katalin M. Hangos,et al.  Dynamic analysis and control of a simple nonlinear limb model , 2005 .