COVER FEATURE HYBRID HUMAN-ARTIFICIAL INTELLIGENCE

18 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 9 1 6 2 / 2 0 © 2 0 2 0 I E E E Zeynep Akata, University of Amsterdam and University of Tübingen Dan Balliet, Vrije Universiteit Amsterdam Maarten de Rijke, University of Amsterdam Frank Dignum, Utrecht University Virginia Dignum, TU Delft Guszti Eiben and Antske Fokkens, Vrije Universiteit Amsterdam Davide Grossi, University of Groningen Koen Hindriks, Vrije Universiteit Amsterdam Holger Hoos, Leiden University Hayley Hung and Catholijn Jonker, TU Delft Christof Monz, University of Amsterdam Mark Neerincx and Frans Oliehoek, TU Delft Henry Prakken, Utrecht University A Research Agenda for Hybrid Intelligence: Augmenting Human Intellect With Collaborative, Adaptive, Responsible, and Explainable Artificial Intelligence

[1]  Keith C. Clarke,et al.  Error and Bias in Determining Exposure Potential of Children at School Locations Using Proximity-Based GIS Techniques , 2007, Environmental health perspectives.

[2]  Frank Dignum,et al.  Modelling Agent Societies: Co-ordination Frameworks and Institutions , 2001, EPIA.

[3]  Carmen Lacave,et al.  A review of explanation methods for Bayesian networks , 2002, The Knowledge Engineering Review.

[4]  Rajeev Sharma,et al.  Designing a human-centered, multimodal GIS interface to support emergency management , 2002, GIS '02.

[5]  Maia B. Cook,et al.  Human Factors of the Confirmation Bias in Intelligence Analysis: Decision Support From Graphical Evidence Landscapes , 2008, Hum. Factors.

[6]  Paolo Turrini,et al.  Dependence in games and dependence games , 2012, Autonomous Agents and Multi-Agent Systems.

[7]  Bart Verheij,et al.  How much does it help to know what she knows you know? An agent-based simulation study , 2013, Artif. Intell..

[8]  Maya Cakmak,et al.  Power to the People: The Role of Humans in Interactive Machine Learning , 2014, AI Mag..

[9]  Twan Koolen,et al.  Team IHMC's Lessons Learned from the DARPA Robotics Challenge Trials , 2015, J. Field Robotics.

[10]  Pieter E. Vermaas,et al.  Handbook of ethics, values, and technological design : sources, theory, values and application domains , 2015 .

[11]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[12]  Joyce Yue Chai,et al.  Interactive Learning of Grounded Verb Semantics towards Human-Robot Communication , 2017, ACL.

[13]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[14]  Maartje M. A. de Graaf,et al.  How People Explain Action (and Autonomous Intelligent Systems Should Too) , 2017, AAAI Fall Symposia.

[15]  Andrew Slavin Ross,et al.  Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations , 2017, IJCAI.

[16]  Angelo Romano,et al.  Reciprocity Outperforms Conformity to Promote Cooperation , 2017, Psychological science.

[17]  Jeroen van den Hoven,et al.  Measuring Moral Acceptability in E-deliberation , 2018, ACM Trans. Internet Techn..

[18]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[19]  Frank van Harmelen,et al.  A Boxology of Design Patterns for Hybrid Learning and Reasoning Systems , 2019, BNAIC/BENELEARN.

[20]  Subbarao Kambhampati,et al.  Challenges of Human-Aware AI Systems , 2019, AI Mag..

[21]  Ekin Gedik,et al.  Complex conversational scene analysis using wearable sensors , 2019, Multimodal Behavior Analysis in the Wild.

[22]  Koen V. Hindriks,et al.  A Child and a Robot Getting Acquainted - Interaction Design for Eliciting Self-Disclosure , 2019, AAMAS.