Visualizing Missing Data : Classification and Empirical Study

Most visualization tools fail to provide support for missing data. We identify sources of missing, and categorize data visualization techniques based on the impact missing data have on the display: region dependent, attribute dependent, and neighbor dependent. We then report on a user study with 30 participants that compared three design variants. A between-subject graph interpretation study provides strong evidence for the need of indicating the presence of missing information, and some direction for addressing the problem.

[1]  Yair M. Babad,et al.  Even no data has a value , 1984, CACM.

[2]  John Cavallo,et al.  Restorer: a visualization technique for handling missing data , 1994, Proceedings Visualization '94.

[3]  Robert J. Beichner,et al.  Testing student interpretation of kinematics graphs , 1994 .

[4]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[5]  Heike Hofmann,et al.  Interactive Graphics for Data Sets with Missing Values—MANET , 1996 .

[6]  James T. Enns,et al.  High-speed visual estimation using preattentive processing , 1996, TCHI.

[7]  David Howard,et al.  Interface Design for Geographic Visualization: Tools for Representing Reliability , 1996 .

[8]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[9]  Deborah F. Swayne,et al.  Missing Data in Interactive High-Dimensional Data Visualization , 1998 .

[10]  Alan M. MacEachren,et al.  Visualizing Georeferenced Data: Representing Reliability of Health Statistics , 1998 .

[11]  Alex T. Pang,et al.  Visualizing gridded datasets with large number of missing values , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[12]  Nahum Gershon Knowing what we don't know: how to visualize an imperfect world , 1999, COMG.

[13]  Lee Brasseur The role of experience and culture in computer graphing and graph interpretive processes , 1999, SIGDOC '99.

[14]  Penny Rheingans,et al.  Procedural annotation of uncertain information , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[15]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[16]  Richard Dybowski,et al.  Prediciton regions for the visualization of incomplete datasets , 2001, Comput. Stat..

[17]  Jock D. Mackinlay,et al.  Visualizing data with bounded uncertainty , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[18]  Wolff-Michael Roth,et al.  When Are Graphs Worth Ten Thousand Words? An Expert-Expert Study , 2003 .

[19]  Catherine Plaisant,et al.  The Challenge of Missing and Uncertain Data (Poster) , 2003 .