Spacecraft Interaction with Atmospheric Species in Low Earth Orbit

Spacecraft interaction with ambient atmospheric species (O, NI, O, and electrons) in low Earth orbit involves collisions at high energies, giving rise to such complex phenomena as the shuttle glow, plume-atmosphere interactions, and plasma modifications. A survey of these and other effects is presented, and conclusions are drawn about possible ambiguities in interpretation of present data. For example, a suggestion is made that ions may play a role in the Shuttle glow phenomenon. Lack of data on the accommodation (in terms of energy and in terms of adsorption and subsequent reactions) of atmospheric species, such as O and NI, on amorphous surfaces at hyperthermal energies is a distinct handicap in the development of appropriate numerical codes for predicting the effects of spacecraft interactions.

[1]  R. S. Narcisi,et al.  The Gaseous and Plasma Environment Around Space Shuttle , 1983 .

[2]  D. Hunton,et al.  Thruster firing effects in the shuttle environment: 2. Positive ion composition , 1994 .

[3]  R. Laher,et al.  Ablation of materials in the low-earth orbital environment , 1988 .

[4]  G. R. Swenson,et al.  Excitation of the low lying vibrational levels of H2O by O(³P) as measured on Spacelab 2 , 1994 .

[5]  R. Willingale,et al.  Evidence for a far-ultraviolet spacecraft glow in the ROSAT wide-field camera , 1994 .

[6]  K. Moe,et al.  Refinements in Determining Satellite Drag Coefficients: Method for Resolving Density Discrepancies , 1993 .

[7]  A simple model for the initial phase of a water plasma cloud about a large structure in space , 1988 .

[8]  E. Murad Spacecraft Interactions as Influenced by Thermochemical Considerations , 1989 .

[9]  Joseph M. Grebowsky,et al.  Thermal ion perturbations observed in the vicinity of the Space Shuttle , 1987 .

[10]  D. Hastings,et al.  The motion of contaminant water plasma clouds about large active space structures , 1989 .

[11]  B. D. Green,et al.  The Shuttle environment - Gases, particulates, and glow , 1985 .

[12]  C. P. Pike,et al.  Spectral characteristics of shuttle glow , 1992 .

[13]  H. Garrett The charging of spacecraft surfaces , 1981 .

[14]  E. Murad,et al.  An overview of atomic and molecular processes in critical velocity ionization , 1989 .

[15]  J. Eccles,et al.  A numerical model of the electrodynamics of plasma within the contaminant gas cloud of the Space Shuttle Orbiter at low Earth orbit , 1989 .

[16]  S. B. Mende,et al.  Observations of optical emissions on STS-4 , 1983 .

[17]  F. Herrero,et al.  Satellite drag coefficients and upper atmosphere densities - Present status and future directions , 1988 .

[18]  A. Klekociuk,et al.  Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies , 1987, Science.

[19]  Andrew Zangwill,et al.  Physics at Surfaces: Physisorption , 1988 .

[20]  J. Grebowsky,et al.  Thermal ion complexities observed within the spacelab 2 bay , 1987 .

[21]  C. P. Pike,et al.  Origin of the shuttle glow , 1991, Nature.

[22]  C. P. Pike,et al.  Spectrographic observation at wavelengths near 630 nm of the interaction between the atmosphere and the space shuttle exhaust , 1992 .

[23]  Erick T. Young,et al.  Infrared observations of contaminants from shuttle flight 51-F , 1987 .

[24]  A. Hedin,et al.  DE‐2 mass spectrometer observations relevant to the shuttle glow , 1986 .

[25]  U. Zahn,et al.  Nitrogen dioxide emitted from space shuttle surfaces and shuttle glow , 1986, Nature.

[26]  D. Hastings,et al.  The interpretation of space shuttle measurements of ionic species , 1987 .

[27]  E. Murad,et al.  Observation of CH A→X, CN B→X, and NH A→X emissions in gas‐phase collisions of fast O(3P) atoms with hydrazines , 1994 .

[28]  J. Barrett,et al.  Spacecraft glows from surface-catalyzed reactions , 1986 .

[29]  Andrew Zangwill Physics at Surfaces , 1988 .

[30]  E. Murad,et al.  The Role of Plasma Processes in the Space Shuttle Environment , 1988 .

[31]  S. Mende,et al.  Ram vehicle glow spectrum; Implication of NO2 recombination continuum , 1985 .

[32]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[33]  H. Trinks,et al.  Experimental Investigation of Bipropellant Exhaust Plume Flowfield, Heating, and Contamination and Comparison with the CONTAM Computer Model Predictions , 1983 .

[34]  L. J. Leger,et al.  A Consideration of Atomic Oxygen Interactions with the Space Station , 1986 .

[35]  D. Hunton Thruster firing effects in the shuttle environment: 1. Neutral gas composition , 1994 .

[36]  H. K. F. Ehlers An analysis of return flux from the Space Shuttle Orbiter RCS engines , 1984 .

[37]  L. Murr,et al.  Effects of low earth orbit , 1993 .

[38]  H. Garrett,et al.  Space vehicle glow and its impact on spacecraft systems , 1988 .

[39]  R. Huffman,et al.  Thermal and Recombination Emission of NO2 , 1970 .

[40]  Daniel E. Hastings,et al.  A review of plasma interactions with spacecraft in low earth orbit , 1995 .

[41]  D. G. King-Hele,et al.  Theory of satellite orbits in an atmosphere , 1964 .

[42]  Gerard P. Kuiper Origin of the Solar System , 1938 .

[43]  E. R. Miller,et al.  Results of apparent atomic oxygen reactions on Ag, C, and Os exposed during the Shuttle STS-4 orbits , 1983 .

[44]  N. H. March,et al.  Chemical Bonds Outside Metal Surfaces , 1986 .

[45]  B. Green,et al.  The shuttle glow as an indicator of material changes in space , 1986 .

[46]  K. Moe,et al.  The roles of kinetic theory and gas-surface interactions in measurements of upper-atmospheric density , 1969 .

[47]  W. J. Raitt,et al.  Space shuttle glow observations , 1983 .

[48]  U. Zahn,et al.  The shuttle environment: Effects of thruster firings on gas density and composition in the payload bay , 1986 .

[49]  G. B. Murphy,et al.  Plasma Diagnostics Package Initial Assessment of the Shuttle Orbiter Plasma Environment , 1984 .

[50]  R. Gasser,et al.  An Introduction to Chemisorption and Catalysis by Metals , 1987 .

[51]  Surface Physics (2nd edn) , 1984 .

[52]  K. Papadopoulos On the shuttle glow (the plasma alternative) , 1984 .

[53]  C. P. Pike,et al.  The interaction of the atmosphere with the space shuttle thruster plume: The NH(A-X) 336-nm emission , 1996 .

[54]  E. Murad,et al.  Detailed study of the dynamics of the O+(4S)+ HCN reaction. A case study of ion–molecule reactions in the spacecraft environment , 1996 .

[55]  William S. Kurth,et al.  Effects of chemical releases by the STS-3 Orbiter on the ionosphere. Final report , 1983 .

[56]  B. L. Cragin,et al.  The case of the noisy derivatives-evidence for a spacecraft-plasma interaction , 1981 .

[57]  E. Murad,et al.  Analysis of ion densities in the vicinity of space vehicles: Ion-neutral chemical kinetics , 1991 .

[58]  N. Brenning Review of the CIV phenomenon , 1992 .

[59]  Heon Kang,et al.  Inelastic processes in low-energy ion-surface collisions , 1989 .

[60]  E. R. Huppi,et al.  Space shuttle observations of collisionally excited outgassed water vapor , 1994 .

[61]  B. Green,et al.  Infrared spectral measurement of space shuttle glow , 1992 .

[62]  J. Visentine,et al.  STS-8 atomic oxygen effects experiment , 1985 .

[63]  J. Mitchell The dissociative recombination of molecular ions , 1990 .

[64]  P. Peters,et al.  Effects of optical systems from interactions with oxygen atoms in low earth orbits. , 1986, Applied optics.

[65]  Timothy J. Lee Bond distance and vibrational spectrum of the molecular cation NO+2 , 1992 .

[66]  島内 みどり,et al.  G. Herzberg: Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, D. Van Nostrand, Prinston 1966, 745頁, 16.5×24cm, 8,000円. , 1968 .

[67]  E. Murad,et al.  Modeling of atmospherically induced gas phase optical contamination from orbiting spacecraft , 1990 .

[68]  D. Hastings,et al.  Simulation of the critical ionization velocity: Effect of using physically correct mass ratios , 1992 .

[69]  A. Dalgarno,et al.  Radiative Lifetime Analysis of the Shuttle Optical Glow , 1986 .