Organic matter enrichment in Asia's palaeolake controlled by the early and middle Eocene global warming and astronomically driven precessional climate

[1]  H. Falcon-Lang,et al.  Eocene Hyperthermal Events Drove Episodes of Vegetation Turnover in the Fushun Basin, Northeast China: Evidence from a Palaeoclimate Analysis of Palynological Assemblages , 2022, SSRN Electronic Journal.

[2]  J. Zachos,et al.  Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain , 2022, Nature Communications.

[3]  Zaixing Jiang,et al.  Astronomical forcing of meter-scale organic-rich mudstone–limestone cyclicity in the Eocene Dongying sag, China: Implications for shale reservoir exploration , 2022, AAPG Bulletin.

[4]  P. Sun,et al.  Eocene hyperthermal events in the terrestrial system: Geochronological and astrochronological constraints in the Fushun Basin, NE China , 2022, Marine and Petroleum Geology.

[5]  Q. Cao,et al.  A comparative study of organic-rich shale from turbidite and lake facies in the Paleogene Qikou Sag (Bohai Bay Basin, East China): Organic matter accumulation, hydrocarbon potential and reservoir characterization , 2022, Palaeogeography, Palaeoclimatology, Palaeoecology.

[6]  W. Xudong,et al.  The formation of early Eocene organic-rich mudstone in the western Pearl River Mouth Basin, South China: Insight from paleoclimate and hydrothermal activity , 2022, International Journal of Coal Geology.

[7]  Shiqiang Wu,et al.  Fine-grained carbonate formation and organic matter enrichment in an Eocene saline rift lake (Qianjiang Depression): Constraints from depositional environment and material source , 2022, Marine and Petroleum Geology.

[8]  Si Chen,et al.  Architecture and depositional processes of sublacustrine fan systems in structurally active settings: An example from Weixinan Depression, northern South China Sea , 2021, Marine and Petroleum Geology.

[9]  C. Belcher,et al.  Wildfire activity enhanced during phases of maximum orbital eccentricity and precessional forcing in the Early Jurassic , 2021, Communications Earth & Environment.

[10]  R. Coccioni,et al.  Impact of the Middle Eocene Climatic Optimum (MECO) on Foraminiferal and Calcareous Nannofossil Assemblages in the Neo-Tethyan Baskil Section (Eastern Turkey): Paleoenvironmental and Paleoclimatic Reconstructions , 2021, Applied Sciences.

[11]  Ma Chao,et al.  Astrochronology of a middle Eocene lacustrine sequence and sedimentary noise modeling of lake-level changes in Dongying Depression, Bohai Bay Basin , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[12]  Lei Chen,et al.  Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician–Early Silurian in the Upper Yangtze area, South China , 2021, Petroleum Exploration and Development.

[13]  Fuqi Cheng,et al.  Factors controlling organic-rich shale development in the Liushagang Formation, Weixinan Sag, Beibu Gulf Basin: Implications of structural activity and the depositional environment , 2021, Petroleum Science.

[14]  R. Carroll,et al.  Periodic oceanic euxinia and terrestrial fluxes linked to astronomical forcing during the Late Devonian Frasnian–Famennian mass extinction , 2021 .

[15]  Mohammad Alqudah,et al.  Depositional environment of Eocene oil shales of Wadi Shallala Formation from northern Jordan , 2021, Arabian Journal of Geosciences.

[16]  Xingang Niu,et al.  Astronomically forced climate cooling across the Eocene–Oligocene transition in the Pearl River Mouth Basin, northern South China Sea , 2020 .

[17]  Wei Wei,et al.  Elemental proxies for paleosalinity analysis of ancient shales and mudrocks , 2020 .

[18]  Mingsong Li,et al.  Astrochronology of the Ediacaran Shuram carbon isotope excursion, Oman , 2020 .

[19]  N. Marwan,et al.  An astronomically dated record of Earth’s climate and its predictability over the last 66 million years , 2020, Science.

[20]  N. Zhong,et al.  Mechanism for the enrichment of organic matter in the Liushagang Formation of the Weixinan Sag, Beibuwan Basin, China , 2020 .

[21]  Chengshan Wang,et al.  Astronomical forcing of Middle Permian terrestrial climate recorded in a large paleolake in northwestern China , 2020 .

[22]  Chengshan Wang,et al.  Recognition of Milankovitch cycles in XRF core-scanning records of the Late Cretaceous Nenjiang Formation from the Songliao Basin (northeastern China) and their paleoclimate implications , 2020, Journal of Asian Earth Sciences.

[23]  M. Giorgioni,et al.  Abyssal oceanic circulation and acidification during the Middle Eocene Climatic Optimum (MECO) , 2020, Scientific Reports.

[24]  Honghan Chen,et al.  Astronomical forcing and sedimentary noise modeling of lake-level changes in the Paleogene Dongpu Depression of North China , 2020, Earth and Planetary Science Letters.

[25]  Xing Zhu,et al.  Orbital control on cyclical organic matter accumulation in Early Silurian Longmaxi Formation shales , 2020 .

[26]  X. Pang,et al.  Palaeoenvironmental periodisms of middle Eocene terrestrial sediments in Bohai Bay Basin, eastern China, and their implications for organic matter accumulation , 2020 .

[27]  Qinghai Li,et al.  Astronomical forcing of terrestrial climate recorded in the Pleistocene of the western Tarim Basin, NW China , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[28]  G. Gao,et al.  Petroleum source and accumulation of WZ12 oils in the Weixi'nan sag, south China sea, China , 2019, Journal of Petroleum Science and Engineering.

[29]  Mingsong Li,et al.  Acycle: Time-series analysis software for paleoclimate research and education , 2019, Comput. Geosci..

[30]  L. Hinnov,et al.  Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China , 2019, Earth-Science Reviews.

[31]  B. Otto‐Bliesner,et al.  Pliocene and Eocene provide best analogs for near-future climates , 2018, Proceedings of the National Academy of Sciences.

[32]  M. Mann,et al.  Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing , 2018, Earth and Planetary Science Letters.

[33]  Zhijun Jin,et al.  Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[34]  J. Middelburg,et al.  Middle Eocene greenhouse warming facilitated by diminished weathering feedback , 2018, Nature Communications.

[35]  M. Ikehara,et al.  Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs , 2018, Scientific Reports.

[36]  M. Zivanovic,et al.  Spectral Moments in Cyclostratigraphy: Advantages and Disadvantages Compared to More Classic Approaches , 2018 .

[37]  E. Menichetti,et al.  Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian Stage (Early Silurian) , 2018 .

[38]  A. Anbar,et al.  Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction , 2018, Science Advances.

[39]  J. Laskar,et al.  Towards a robust and consistent middle Eocene astronomical timescale , 2018 .

[40]  L. Hinnov,et al.  Sedimentary noise and sea levels linked to land–ocean water exchange and obliquity forcing , 2018, Nature Communications.

[41]  G. Sun,et al.  Quantitative reconstruction of Middle and Late Eocene paleoclimate based on palynological records from the Huadian Basin, northeastern China: Evidence for monsoonal influence on oil shale formation , 2017, Palaeogeography, Palaeoclimatology, Palaeoecology.

[42]  J. Zachos,et al.  Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? , 2017 .

[43]  X. Xiao,et al.  Characterization of Eocene lacustrine source rocks and their oils in the Beibuwan Basin, offshore South China Sea , 2017 .

[44]  H. Svensen,et al.  Biostratigraphy and carbon and nitrogen geochemistry of the SPICE event in Cambrian low-grade metamorphic black shale, Southern Norway , 2017 .

[45]  H. Jenkyns,et al.  Orbital pacing of the Early Jurassic carbon cycle, black‐shale formation and seabed methane seepage , 2017 .

[46]  M. Leng,et al.  Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations , 2016 .

[47]  R. Spicer,et al.  Asian Eocene monsoons as revealed by leaf architectural signatures , 2016 .

[48]  L. Hinnov,et al.  Obliquity-forced climate during the Early Triassic hothouse in China , 2016 .

[49]  Haiyang Cao,et al.  Astronomical forcing of sedimentary cycles of Late Eocene Liushagang Formation in the Bailian Sag, Fushan Depression, Beibuwan Basin, South China Sea , 2016 .

[50]  J. Zachos,et al.  Frequency, magnitude and character of hyperthermal events at the onset of the Early Eocene Climatic Optimum , 2015 .

[51]  J. Zachos,et al.  Astronomical calibration of the geological timescale: closing the middle Eocene gap , 2015 .

[52]  P. Sexton,et al.  Episodes of intensified biological productivity in the subtropical Atlantic Ocean during the termination of the Middle Eocene Climatic Optimum (MECO) , 2015 .

[53]  M. Pagani,et al.  The middle Eocene climatic optimum (MECO): A multiproxy record of paleoceanographic changes in the southeast Atlantic (ODP Site 1263, Walvis Ridge) , 2014 .

[54]  Fahu Chen,et al.  Chemical weathering over the last 1200 years recorded in the sediments of Gonghai Lake, Lvliang Mountains, North China: a high‐resolution proxy of past climate , 2014 .

[55]  X. Xiao,et al.  Geochemical characteristics, palaeoenvironment and formation model of Eocene organic-rich shales in the Beibuwan Basin, South China Sea , 2013 .

[56]  U. Röhl,et al.  Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event: Missing link found in the tropical western Atlantic , 2013 .

[57]  Feng Wu,et al.  A Rb/Sr record of the weathering response to environmental changes in westerly winds across the Tarim Basin in the late Miocene to the early Pleistocene , 2013 .

[58]  I. Unkel,et al.  Diatom assemblage changes in lacustrine sediments from Isla de los Estados, southernmost South America, in response to shifts in the southwesterly wind belt during the last deglaciation , 2013, Journal of Paleolimnology.

[59]  A. Sluijs,et al.  A middle Eocene carbon cycle conundrum , 2013 .

[60]  J. Marotzke,et al.  A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP , 2012 .

[61]  T. Algeo,et al.  Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography , 2012 .

[62]  F. Arnaud,et al.  Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology , 2012 .

[63]  B. Sageman,et al.  Obliquity forcing of organic matter accumulation during Oceanic Anoxic Event 2 , 2012 .

[64]  P. Gingerich,et al.  Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals , 2012 .

[65]  J. Ji,et al.  The early-Eocene climate optimum (EECO) event in the Qaidam basin, northwest China: clay evidence , 2011, Clay Minerals.

[66]  J. Laskar,et al.  On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences , 2011 .

[67]  Weijian Zhou,et al.  Glacial-Interglacial Indian Summer Monsoon Dynamics , 2011, Science.

[68]  M. Huber,et al.  Climate of the Past Discussions , 2005 .

[69]  Pinxian Wang,et al.  Simulation of long eccentricity (400‐kyr) cycle in ocean carbon reservoir during Miocene Climate Optimum: Weathering and nutrient response to orbital change , 2011 .

[70]  F. A. McInerney,et al.  The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future , 2011 .

[71]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[72]  M. Kylander,et al.  High‐resolution X‐ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies , 2011 .

[73]  I. Unkel,et al.  Records of environmental changes during the Holocene from Isla de los Estados (54.4°S), southeastern Tierra del Fuego , 2010 .

[74]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[75]  L. Hinnov,et al.  Astrochronology of the late Jurassic Kimmeridge Clay (Dorset, England) and implications for Earth system processes , 2010 .

[76]  Fabio Florindo,et al.  Coupled Greenhouse Warming and Deep Sea Acidification in the Middle Eocene , 2009 .

[77]  A. T. Cross,et al.  Global greenhouse to icehouse and back again: The origin and future of the Boreal Forest biome , 2009 .

[78]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[79]  Thomas J. Algeo,et al.  Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions , 2006 .

[80]  Junji Cao,et al.  A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia , 2006 .

[81]  A. Ruffell,et al.  Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, U.K.) , 2006 .

[82]  P. Hofmann,et al.  Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response , 2005, Nature.

[83]  I. Kalugin,et al.  Rhythmic fine-grained sediment deposition in Lake Teletskoye, Altai, Siberia, in relation to regional climate change , 2005 .

[84]  J. Zachos,et al.  Astronomical pacing of late Palaeocene to early Eocene global warming events , 2005, Nature.

[85]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[86]  J. Wright,et al.  Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n) , 2003 .

[87]  Steven M Bohaty,et al.  Significant Southern Ocean warming event in the late middle Eocene , 2003 .

[88]  H. Brumsack,et al.  Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: palaeoenvironmental constraints and orbital cycles , 2001 .

[89]  F. Hilgen,et al.  Orbital forcing in Pliocene-Pleistocene Mediterranean lacustrine deposits: Dominant expression of eccentricity versus precession , 2001 .

[90]  Stefan Schouten,et al.  Massive Expansion of Marine Archaea During a Mid-Cretaceous Oceanic Anoxic Event , 2001, Science.

[91]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[92]  R. Amundson,et al.  Terrestrial record of methane hydrate dissociation in the Early Cretaceous , 2001 .

[93]  P. Meyers,et al.  Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes , 1997 .

[94]  B. Courtinat The significance of palynofacies fluctuations in the Greenhorn Formation (Cenomanian-Turonian) of the Western Interior Basin, USA , 1993 .

[95]  J. Curiale,et al.  Application of organic geochemistry to sequence stratigraphic analysis: Four corners platform area, New Mexico, U.S.A. , 1992 .

[96]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[97]  N. Shackleton,et al.  The climate of the Eocene ocean , 1981, Journal of the Geological Society.

[98]  H. Nesbitt,et al.  Chemical processes affecting alkalis and alkaline earths during continental weathering , 1980 .

[99]  C. E. Weaver Potassium, illite and the ocean , 1967 .

[100]  C. Conrad,et al.  Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous , 2016 .

[101]  N. Sheldon,et al.  Coupled CO2-climate response during the Early Eocene Climatic Optimum , 2013 .

[102]  Xie Jin-you PALYNOFLORAS AND AGE OF THE LIUSHAGANG AND WEIZHOU FORMATIONS IN THE BEIBUWAN BASIN,SOUTH CHINA SEA , 2012 .

[103]  You Junjun Geochemical characteristics and formation mechanism of Eocene lacustrine organic-rich shales in the Beibuwan Basin , 2012 .

[104]  L. Hinnov,et al.  Cyclostratigraphy and Astrochronology , 2012 .

[105]  A. Demetriades,et al.  Introduction to the chemistry and geochemistry of the elements , 2006 .

[106]  W. Krijgsman,et al.  Messinian pre-evaporite sapropels and precession-induced oscillations in western Mediterranean climate , 1999 .

[107]  L. Sloan,et al.  Atmospheric carbon dioxide and early Eocene climate: A general circulation modeling sensitivity study , 1996 .

[108]  L. Schütz,et al.  Trace-element concentrations in erodible soils , 1981 .