Optical traps for single molecule biophysics: a primer

Optical trapping experiments of different complex- ities are making a significant impact in biology. This review seeks to highlight design choices for scientists entering the field or building new instruments and to discuss making calibrated measurements with optical traps. For specificity, this review focuses on nucleic acid-based assays, but the discussion reflects the general experimental design considerations of developing a biological assay and an optical trap to measure it.

[1]  U. Bockelmann,et al.  Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. , 2002, Biophysical journal.

[2]  Ashley R. Carter,et al.  Stabilization of an Optical Microscope to 0.1 Nm in Three Dimensions , 2022 .

[3]  Ronald R. Breaker,et al.  Natural and engineered nucleic acids as tools to explore biology , 2004, Nature.

[4]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[5]  L. Finzi,et al.  Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules , 1995, Science.

[6]  Imaging and nanomanipulation of single biomolecules at work: working principle of biological molecular machines , 1999 .

[7]  K. Schütze,et al.  Force generation of organelle transport measured in vivo by an infrared laser trap , 1990, Nature.

[8]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[9]  Megan T Valentine,et al.  Precision steering of an optical trap by electro-optic deflection. , 2008, Optics letters.

[10]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[11]  C. Schmidt,et al.  Signals and noise in micromechanical measurements. , 1998, Methods in cell biology.

[12]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[13]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[14]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[15]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[16]  Ashley R. Carter,et al.  Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D. , 2007, Optics express.

[17]  W. Greenleaf,et al.  High-resolution, single-molecule measurements of biomolecular motion. , 2007, Annual review of biophysics and biomolecular structure.

[18]  T. Perkins,et al.  Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. , 2004, Optics letters.

[19]  Michelle D. Wang,et al.  Detection of forces and displacements along the axial direction in an optical trap. , 2006, Biophysical journal.

[20]  I. Tinoco,et al.  RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP , 2006, Nature.

[21]  R. Larson,et al.  Stretching of a single tethered polymer in a uniform flow. , 1995, Science.

[22]  E. Stelzer,et al.  Three‐dimensional high‐resolution particle tracking for optical tweezers by forward scattered light , 1999, Microscopy research and technique.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[25]  Ignacio Tinoco,et al.  Identifying Kinetic Barriers to Mechanical Unfolding of the T. thermophila Ribozyme , 2003, Science.

[26]  Mark Dykman,et al.  Thermally activated transitions in a bistable three-dimensional optical trap , 1999, Nature.

[27]  M. Sheetz,et al.  Transcription by single molecules of RNA polymerase observed by light microscopy , 1991, Nature.

[28]  D. Grier A revolution in optical manipulation , 2003, Nature.

[29]  V. Subramaniam,et al.  Force detection in optical tweezers using backscattered light. , 2005, Optics express.

[30]  Hiroyasu Itoh,et al.  Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase , 2001, Nature.

[31]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[32]  David Keller,et al.  Single-molecule studies of the effect of template tension on T7 DNA polymerase activity , 2000, Nature.

[33]  H. Rubinsztein-Dunlop,et al.  Determination of the force constant of a single-beam gradient trap by measurement of backscattered light. , 1996, Applied optics.

[34]  Gijs J. L. Wuite,et al.  DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway , 2005, Nucleic acids research.

[35]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[36]  Taekjip Ha,et al.  Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase , 2002, Nature.

[37]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[38]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[39]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Gary M. Skinner,et al.  Promoter Binding, Initiation, and Elongation By Bacteriophage T7 RNA Polymerase , 2004, Journal of Biological Chemistry.

[41]  Michelle D. Wang,et al.  Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[43]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[44]  Alexander Rohrbach,et al.  Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.

[45]  Alexander Rohrbach,et al.  Switching and measuring a force of 25 femtoNewtons with an optical trap. , 2005, Optics express.

[46]  Rod Balhorn,et al.  Processive translocation and DNA unwinding by individual RecBCD enzyme molecules , 2001, Nature.

[47]  S. Gross,et al.  Cargo Transport: Two Motors Are Sometimes Better Than One , 2007, Current Biology.

[48]  Matthias Rief,et al.  Myosin-V is a processive actin-based motor , 1999, Nature.

[49]  William H. Press,et al.  Numerical recipes in C , 2002 .

[50]  Steven M Block,et al.  Forward and reverse motion of single RecBCD molecules on DNA. , 2004, Biophysical journal.

[51]  David A. Sivak,et al.  Controlling DNA capture and propagation through artificial nanopores. , 2007, Nano letters.

[52]  Robert Landick,et al.  Diversity in the Rates of Transcript Elongation by Single RNA Polymerase Molecules* , 2004, Journal of Biological Chemistry.

[53]  R. Vale,et al.  Imaging and nano-manipulation of single biomolecules. , 1997, Biophysical chemistry.

[54]  Matthew J Lang,et al.  Interlaced optical force-fluorescence measurements for single molecule biophysics. , 2006, Biophysical journal.

[55]  G. Wuite,et al.  Visualizing single DNA-bound proteins using DNA as a scanning probe , 2007, Nature Methods.

[56]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[57]  Paul R. Selvin,et al.  Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement? , 2005, Science.

[58]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[59]  Michelle D. Wang,et al.  Dynamic force spectroscopy of protein-DNA interactions by unzipping DNA. , 2003, Physical review letters.

[60]  David Bensimon,et al.  Single-molecule analysis of DNA uncoiling by a type II topoisomerase , 2000, Nature.

[61]  D. Herschlag,et al.  Direct Measurement of the Full, Sequence-Dependent Folding Landscape of a Nucleic Acid , 2006, Science.

[62]  S. Smith,et al.  Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. , 1992, Science.

[63]  R. Ebright,et al.  Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.

[65]  Joshua W. Shaevitz,et al.  Backtracking by single RNA polymerase molecules observed at near-base-pair resolution , 2003, Nature.

[66]  Stephen R. Quake,et al.  The dynamics of partially extended single molecules of DNA , 1997, Nature.

[67]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[68]  V. Croquette,et al.  Replication by a single DNA polymerase of a stretched single-stranded DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Mehta,et al.  Single molecule biochemistry using optical tweezers , 1998, FEBS letters.

[70]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[71]  Joshua W Shaevitz,et al.  An automated two-dimensional optical force clamp for single molecule studies. , 2002, Biophysical journal.

[72]  Michelle D. Wang,et al.  Force and velocity measured for single molecules of RNA polymerase. , 1998, Science.

[73]  J. Gelles,et al.  χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules , 2001, Nature.

[74]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[75]  Elio A. Abbondanzieri,et al.  Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking , 2003, Cell.

[76]  Toshio Yanagida,et al.  Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules , 2001, Nature Cell Biology.

[77]  Michelle D. Wang,et al.  Single-Molecule Studies Reveal Dynamics of DNA Unwinding by the Ring-Shaped T7 Helicase , 2007, Cell.

[78]  Cees Dekker,et al.  Optical tweezers for force measurements on DNA in nanopores , 2006 .

[79]  K. Neuman,et al.  Optical trapping. , 2004, The Review of scientific instruments.

[80]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[81]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[82]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[83]  R. T. Tregear,et al.  Movement and force produced by a single myosin head , 1995, Nature.

[84]  Halina Rubinsztein-Dunlop,et al.  Optical torque on microscopic objects. , 2007, Methods in cell biology.

[85]  Scott Forth,et al.  Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection , 2007, Nature Methods.

[86]  Benjamin C. Jantzen,et al.  Probing protein-DNA interactions by unzipping a single DNA double helix. , 2002, Biophysical journal.

[87]  Michelle D. Wang,et al.  Stretching DNA with optical tweezers. , 1997, Biophysical journal.

[88]  W. Denk,et al.  Optical measurement of picometer displacements of transparent microscopic objects. , 1990, Applied optics.

[89]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[90]  Charles C. Richardson,et al.  University of Groningen Single-Molecule Kinetics of λ Exonuclease Reveal Base Dependence and Dynamic Disorder , 2018 .

[91]  Amber L. Wells,et al.  Myosin VI is a processive motor with a large step size , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[92]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[93]  H. Flyvbjerg,et al.  MatLab program for precision calibration of optical tweezers , 2004 .

[94]  J. Liphardt,et al.  Reversible Unfolding of Single RNA Molecules by Mechanical Force , 2001, Science.

[95]  Antoine M. van Oijen,et al.  Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. , 2003, Science.

[96]  J. McIntosh,et al.  Force production by disassembling microtubules , 2005, Nature.

[97]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[98]  R. Landick,et al.  Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule. , 1994, Biophysical journal.

[99]  T. Strick,et al.  Twisting and stretching single DNA molecules. , 2000, Progress in biophysics and molecular biology.

[100]  S. Tans,et al.  The bacteriophage straight phi29 portal motor can package DNA against a large internal force. , 2001, Nature.

[101]  C. Bustamante,et al.  An integrated laser trap/flow control video microscope for the study of single biomolecules. , 2000, Biophysical journal.

[102]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[103]  D. Herschlag,et al.  Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[104]  H. Noji,et al.  A rotary molecular motor that can work at near 100% efficiency. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[105]  S. Block,et al.  Versatile optical traps with feedback control. , 1998, Methods in enzymology.

[106]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[107]  Kirsten L. Frieda,et al.  Direct Observation of Hierarchical Folding in Single Riboswitch Aptamers , 2008, Science.

[108]  Steven M Block,et al.  Passive all-optical force clamp for high-resolution laser trapping. , 2005, Physical review letters.

[109]  Steven M. Block,et al.  Force and velocity measured for single kinesin molecules , 1994, Cell.

[110]  Ulrich Bockelmann,et al.  MOLECULAR STICK-SLIP MOTION REVEALED BY OPENING DNA WITH PICONEWTON FORCES , 1997 .

[111]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[112]  Mark J. Schnitzer,et al.  Single kinesin molecules studied with a molecular force clamp , 1999, Nature.

[113]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[114]  P. Nelson,et al.  Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm. , 2007, Biophysical journal.

[115]  E. Stelzer,et al.  Trapping and tracking a local probe with a photonic force microscope , 2004 .

[116]  Michelle D. Wang,et al.  Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[117]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[118]  Piero R Bianco,et al.  Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after chi recognition. , 2005, Molecular cell.

[119]  Christoph F Schmidt,et al.  Optical trap stiffness in the presence and absence of spherical aberrations. , 2006, Applied optics.

[120]  Rachel Millin,et al.  Tension-dependent DNA cleavage by restriction endonucleases: two-site enzymes are "switched off" at low force. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[121]  Steven M. Block,et al.  Sequence-Resolved Detection of Pausing by Single RNA Polymerase Molecules , 2006, Cell.

[122]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[123]  Jan Greve,et al.  Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers , 2001, Nature Structural Biology.

[124]  Carlos Bustamante,et al.  Optical-trap force transducer that operates by direct measurement of light momentum. , 2003, Methods in enzymology.

[125]  Trisha N Davis,et al.  The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[126]  F. John,et al.  Stretching DNA , 2022 .

[127]  Yael Roichman,et al.  Holographic optical trapping. , 2006, Applied optics.