Polynomial identity rings as rings of functions, II

Abstract In characteristic zero, Zinovy Reichstein and the author generalized the usual relationship between irreducible Zariski closed subsets of the affine space, their defining ideals, coordinate rings, and function fields, to a non-commutative setting, where “varieties” carry a PGL n -action, regular and rational “functions” on them are matrix-valued, “coordinate rings” are prime polynomial identity algebras, and “function fields” are central simple algebras of degree n. In the present paper, much of this is extended to prime characteristic. In addition, a mistake in the earlier paper is corrected. One of the results is that the finitely generated prime PI-algebras of degree n are precisely the rings that arise as “coordinate rings” of “n-varieties” in this setting. For n = 1 the definitions and results reduce to those of classical affine algebraic geometry.

[1]  Yu. P. Razmyslov The Jacobson radical in PI-algebras , 1974 .

[2]  L. L. Bruyn Local structure of Schelter-Procesi smooth orders , 2000 .

[3]  C. Procesi Finite dimensional representations of algebras , 1974 .

[4]  W. Schelter Non-commutative affine P. I. rings are catenary , 1978 .

[5]  W. Santos,et al.  Actions and Invariants of Algebraic Groups , 2005 .

[6]  Concomitants et p-uplets de matrices 2 × 2 , 1996 .

[7]  A. Braun,et al.  Integrality for PI-rings , 1992 .

[8]  Geometric Methods in Representation Theory , 2004, math/0402306.

[9]  T. Browning,et al.  Local Fields , 2008 .

[10]  Valeri V.Dolotin On Invariant Theory , 1995, alg-geom/9512011.

[11]  Z. Reichstein On the notion of essential dimension for algebraic groups , 2000 .

[12]  P. Roquette On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras , 1963 .

[13]  Shmuel Friedland Simultaneous similarity of matrices , 1983 .

[14]  Jean-Pierre Tignol,et al.  The Book of Involutions , 1998 .

[15]  S. A. Amitsur,et al.  Prime ideals in PI-rings☆ , 1980 .

[16]  Mátyás Domokos,et al.  Semi-invariants of quivers as determinants , 2001 .

[17]  A. Zubkov Endomorphisms of tensor products of exterior powers and procesi hypothesis , 1994 .

[18]  E. Formanek,et al.  The polynomial identites and invariants of n?n matrices , 1991 .

[19]  M. Artin,et al.  Integral ring homomorphisms , 1981 .

[20]  Resolving G-torsors by abelian base extensions , 2004, math/0404392.

[21]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.

[22]  M. Artin,et al.  A Version of Zariski's Main Theorem for Polynomial Identity Rings , 1979 .

[23]  I. Dolgachev,et al.  Lectures on Invariant Theory , 2003 .

[24]  A. Zubkov Matrix invariants over an infinite field of finite characteristic , 1993 .

[25]  Claudio Procesi,et al.  The invariant theory of n × n matrices , 1976 .

[26]  C. Procesi,et al.  Jacobson - rings and hilbert algebras with polynomial identities , 1966 .

[27]  T. Willmore Algebraic Geometry , 1973, Nature.

[28]  Louis Rowen,et al.  Polynomial identities in ring theory , 1980 .

[29]  Gerald J. Janusz,et al.  Separable algebras over commutative rings , 1966 .

[30]  Claudio Procesi,et al.  A formal inverse to the Cayley-Hamilton theorem , 1987 .

[31]  S. A. Amitsur On the characteristic polynomial of a sum of matrices , 1980 .

[32]  G. Berhuy,et al.  Essential dimension: A functorial point of view (after A. Merkurjev) , 2003, Documenta Mathematica.

[33]  Group actions on central simple algebras: A geometric approach , 2004, math/0408420.

[34]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[35]  A. Zubkov Modules with Good Filtration and Invariant Theory , 2001 .

[36]  Bruno J. Müller Rings with polynomial identities , 1977 .

[37]  Stephen Donkin,et al.  Invariants of several matrices , 1992 .

[38]  S. A. Amitsur A generalization of Hilbert’s Nullstellensatz , 1957 .

[39]  M. Artin Brauer-Severi varieties , 1982 .

[40]  Mátyás Domokos,et al.  Rings of matrix invariants in positive characteristic , 2002 .

[41]  Armand Borel Linear Algebraic Groups , 1991 .

[42]  M. Artin,et al.  On azumaya algebras and finite dimensional representations of rings , 1969 .