Cooling Limits for GaN HEMT Technology

The peak power density of GaN HEMT technology is limited by a hierarchy of thermal resistances from the junction to the ambient. Here we explore the ultimate or fundamental cooling limits made possible by advanced thermal management technologies including GaN-diamond composites and nanoengineered heat sinks. Through continued attention to near-junction resistances and extreme flux convection, power densities that may exceed 50 kW/cm2 - depending on gate width and hotspot dimension - are feasible within 5 years.

[1]  S. Kandlikar,et al.  Pool Boiling Heat Transfer Enhancement Through Nanostructures on Silicon Microchannels , 2012 .

[2]  A. Majumdar,et al.  MICROSCALE THERMOPHYSICAL ENGINEERING , 1997 .

[3]  D. Poulikakos,et al.  Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells , 2004 .

[4]  J. Graebner,et al.  Measurements of specific heat and mass density in CVD diamond , 1996 .

[5]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[6]  J. Thome,et al.  State of the Art of High Heat Flux Cooling Technologies , 2007 .

[7]  M. Asheghi,et al.  Low Thermal Resistances at GaN–SiC Interfaces for HEMT Technology , 2012, IEEE Electron Device Letters.

[8]  Y. Taniyasu,et al.  RF High-Power Operation of AlGaN/GaN HEMTs Epitaxially Grown on Diamond , 2012, IEEE Electron Device Letters.

[9]  Van P. Carey,et al.  Thermal bubble formation on polysilicon micro resistors , 1998 .

[10]  Martin Kuball,et al.  Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure , 2010, IEEE Electron Device Letters.

[11]  Sergey Bychikhin,et al.  Investigation of the thermal boundary resistance at the III-nitride/substrate interface using optical methods , 2007 .

[12]  Ravi Prasher,et al.  Nano and Micro Technology-Based Next-Generation Package-Level Cooling Solutions , 2005 .

[13]  Yiyang Li,et al.  Phonon scattering in strained transition layers for GaN heteroepitaxy , 2014 .

[14]  T. Kenny,et al.  Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions , 2002 .

[15]  Evelyn N Wang,et al.  Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. , 2012, ACS nano.

[16]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[17]  Suresh V. Garimella,et al.  Thermal Challenges in Next-Generation Electronic Systems , 2003, IEEE Transactions on Components and Packaging Technologies.

[18]  Xiaodong Li,et al.  Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings , 2013 .

[19]  S. Narayanan,et al.  Experimental characterization of a micro-scale thin film evaporative cooling device , 2010, 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[20]  Michael Ohadi,et al.  Force-fed evaporation and condensation utilizing advanced micro-structured surfaces and micro-channels , 2008, Microelectron. J..

[21]  Satish G. Kandlikar,et al.  High Flux Heat Removal with Microchannels—A Roadmap of Challenges and Opportunities , 2005 .

[22]  Ali Koşar,et al.  Boiling heat transfer in rectangular microchannels with reentrant cavities , 2005 .

[23]  M. Asheghi,et al.  Improved Thermal Interfaces of GaN–Diamond Composite Substrates for HEMT Applications , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[24]  S. Garimella,et al.  A COMPARATIVE ANALYSIS OF STUDIES ON HEAT TRANSFER AND FLUID FLOW IN MICROCHANNELS , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[25]  A. Nurmikko,et al.  Formation and characterization of 4-inch GaN-on-diamond substrates , 2010 .

[26]  John D. Albrecht,et al.  Near-Junction Thermal Management for Wide Bandgap Devices , 2011, 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[27]  Kenneth E. Goodson,et al.  Improved heat sinking for laser-diode arrays using microchannels in CVD diamond , 1997 .

[28]  Christophe Gaquiere,et al.  AlGaN/GaN HEMT on (111) single crystalline diamond , 2010 .

[29]  Sushil Kumar,et al.  Recent Progress in Terahertz Quantum Cascade Lasers , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  E. Colgan,et al.  A practical implementation of silicon microchannel coolers for high power chips , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[31]  R. Prasher,et al.  Variations of Acoustic and Diffuse Mismatch Models in Predicting Thermal-Boundary Resistance , 2000 .

[32]  Dimos Poulikakos,et al.  Efficiency of optimized bifurcating tree-like and parallel microchannel networks in the cooling of electronics , 2009 .

[33]  Satish G. Kandlikar,et al.  History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review , 2012 .

[34]  Sheng-Chih Lin,et al.  Cool Chips: Opportunities and Implications for Power and Thermal Management , 2008, IEEE Transactions on Electron Devices.

[35]  Hangfeng Ji,et al.  Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices , 2007, IEEE Transactions on Electron Devices.

[36]  Kenneth E. Goodson,et al.  Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger , 2011 .

[37]  R. Pease,et al.  High-performance heat sinking for VLSI , 1981, IEEE Electron Device Letters.

[38]  J. Weibel,et al.  Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks , 2012 .

[39]  Avram Bar-Cohen,et al.  Advanced thermal management technologies for defense electronics , 2012, Defense, Security, and Sensing.

[40]  Sergey Bychikhin,et al.  Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond , 2011 .