Craniofacial Reconstruction Using Rational Cubic Ball Curves

This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application.

[1]  Keith Unsworth,et al.  Improved Sufficient Conditions for Monotonic Piecewise Rational Quartic Interpolation (Syarat Cukup yang Lebih Baik untuk Interpolasi Kuartik Nisbah Cebis Demi Cebis Berekanada) , 2011 .

[2]  Paul Suetens,et al.  Computerized craniofacial reconstruction using CT-derived implicit surface representations. , 2006, Forensic science international.

[3]  Nadia Magnenat-Thalmann,et al.  Construction of a human topological model from medical data , 2000, IEEE Transactions on Information Technology in Biomedicine.

[4]  Amba D. Bhatt,et al.  Reverse Engineering of Human Body: A B-spline based Heterogeneous Modeling Approach , 2008 .

[5]  Abd Rahni,et al.  Image Reconstruction Using Rational Ball Interpolant and Genetic Algorithm , 2014 .

[6]  Ryszard Tadeusiewicz,et al.  Computer Vision and Graphics , 2014, Lecture Notes in Computer Science.

[7]  X. Y. Kou,et al.  Heterogeneous object modeling: A review , 2007, Comput. Aided Des..

[8]  Qin Lian,et al.  Computer modeling approach for a novel internal architecture of artificial bone , 2006, Comput. Aided Des..

[9]  Hyungjun Park,et al.  B-spline curve fitting based on adaptive curve refinement using dominant points , 2007, Comput. Aided Des..

[10]  Matthias Eck,et al.  Automatic reconstruction of B-spline surfaces of arbitrary topological type , 1996, SIGGRAPH.

[11]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[12]  H. B. Said,et al.  A generalized Ball curve and its recursive algorithm , 1989, TOGS.

[13]  Muhammad Sarfraz,et al.  A New Approach to Corner Detection , 2004, ICCVG.

[14]  Ahmad Abdul Majid,et al.  Conic Curve Fitting Using Particle Swarm Optimization: Parameter Tuning , 2011, KTW.

[15]  Toshinobu Harada,et al.  Data fitting with a spline using a real-coded genetic algorithm , 2003, Comput. Aided Des..

[16]  A. A. Ball,et al.  Part 1: Introduction of the conic lofting tile , 1993, Comput. Aided Des..

[17]  Tim N. T. Goodman,et al.  Properties of generalized Ball curves and surfaces , 1991, Comput. Aided Des..

[18]  Gang Zhao,et al.  Adaptive knot placement in B-spline curve approximation , 2005, Comput. Aided Des..