暂无分享,去创建一个
Michalis Vazirgiannis | Giannis Nikolentzos | George Dasoulas | Kevin Scaman | Aladin Virmaux | Kevin Scaman | M. Vazirgiannis | Giannis Nikolentzos | George Dasoulas | Aladin Virmaux
[1] Kurt Mehlhorn,et al. Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..
[2] Philip S. Yu,et al. Deep Recursive Network Embedding with Regular Equivalence , 2018, KDD.
[3] Jure Leskovec,et al. How Powerful are Graph Neural Networks? , 2018, ICLR.
[4] S. Severini,et al. The Laplacian of a Graph as a Density Matrix: A Basic Combinatorial Approach to Separability of Mixed States , 2004, quant-ph/0406165.
[5] Samuel S. Schoenholz,et al. Neural Message Passing for Quantum Chemistry , 2017, ICML.
[6] Ah Chung Tsoi,et al. The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.
[7] Jure Leskovec,et al. Hierarchical Graph Representation Learning with Differentiable Pooling , 2018, NeurIPS.
[8] Danai Koutra,et al. RolX: structural role extraction & mining in large graphs , 2012, KDD.
[9] Yuanming Shi,et al. Fast computation of von Neumann entropy for large-scale graphs via quadratic approximations , 2018 .
[10] Daniel R. Figueiredo,et al. struc2vec: Learning Node Representations from Structural Identity , 2017, KDD.
[11] Yizhou Sun,et al. Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification , 2019, ArXiv.
[12] Yixin Chen,et al. An End-to-End Deep Learning Architecture for Graph Classification , 2018, AAAI.
[13] Yiming Yang,et al. The Enron Corpus: A New Dataset for Email Classi(cid:12)cation Research , 2004 .
[14] Sijia Liu,et al. Fast Incremental von Neumann Graph Entropy Computation: Theory, Algorithm, and Applications , 2018, ICML.
[15] G. Bianconi,et al. Shannon and von Neumann entropy of random networks with heterogeneous expected degree. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] Jure Leskovec,et al. node2vec: Scalable Feature Learning for Networks , 2016, KDD.
[17] Jure Leskovec,et al. Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..
[18] K. Audenaert. A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.
[19] Davide Bacciu,et al. A Fair Comparison of Graph Neural Networks for Graph Classification , 2020, ICLR.
[20] Andrea Torsello,et al. On the von Neumann entropy of graphs , 2018, J. Complex Networks.
[21] Max Welling,et al. Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.
[22] Jafar Adibi,et al. Discovering important nodes through graph entropy the case of Enron email database , 2005, LinkKDD '05.
[23] Steven Skiena,et al. DeepWalk: online learning of social representations , 2014, KDD.
[24] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .
[25] Angsheng Li,et al. Structural Information and Dynamical Complexity of Networks , 2016, IEEE Transactions on Information Theory.
[26] Simone Severini,et al. Quantifying Complexity in Networks: The von Neumann Entropy , 2009, Int. J. Agent Technol. Syst..
[27] Jure Leskovec,et al. Learning Structural Node Embeddings via Diffusion Wavelets , 2017, KDD.
[28] R. Mises,et al. Praktische Verfahren der Gleichungsauflösung . , 1929 .
[29] Lihui Chen,et al. Capsule Graph Neural Network , 2018, ICLR.
[30] Alexander J. Smola,et al. Deep Sets , 2017, 1703.06114.