On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime
暂无分享,去创建一个
[1] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[2] L. Grafakos. Classical Fourier Analysis , 2010 .
[3] James Bremer,et al. On the asymptotics of Bessel functions in the Fresnel regime , 2014, 1409.4100.
[4] M. Goldstein,et al. Bessel functions for large arguments , 1958 .
[5] Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .
[6] Javier Segura,et al. Bounds for ratios of modified Bessel functions and associated Turán-type inequalities , 2011 .
[7] W. Rudin. Principles of mathematical analysis , 1964 .
[8] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[9] George E. Andrews,et al. Special Functions: Partitions , 1999 .
[10] R. Spigler,et al. A numerical method for evaluating zeros of solutions of second-order linear differential equations , 1990 .
[11] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[12] F. Olver. Asymptotics and Special Functions , 1974 .
[13] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[14] R. Bellman. Stability theory of differential equations , 1953 .
[15] František Neuman,et al. Global Properties of Linear Ordinary Differential Equations , 1992 .
[16] E. E. Kummer. De generali quadam aequatione differentiali tertii ordinis. , 1887 .
[17] E. Coddington,et al. Theory of Ordinary Differential Equations , 1955 .
[18] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[19] Marco Vianello,et al. The “phase function” method to solve second-order asymptotically polynomial differential equations , 2012, Numerische Mathematik.