Learning Infinite RBMs with Frank-Wolfe
暂无分享,去创建一个
[1] Nando de Freitas,et al. Inductive Principles for Restricted Boltzmann Machine Learning , 2010, AISTATS.
[2] David M. Bradley,et al. Convex Coding , 2009, UAI.
[3] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[4] Geoffrey E. Hinton,et al. Deep Boltzmann Machines , 2009, AISTATS.
[5] Mark W. Schmidt,et al. Block-Coordinate Frank-Wolfe Optimization for Structural SVMs , 2012, ICML.
[6] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[7] Geoffrey E. Hinton. A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.
[8] Rahul G. Krishnan,et al. Barrier Frank-Wolfe for Marginal Inference , 2015, NIPS.
[9] Nicolas Le Roux,et al. Convex Neural Networks , 2005, NIPS.
[10] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[11] Paul Smolensky,et al. Information processing in dynamical systems: foundations of harmony theory , 1986 .
[12] A. McCallum,et al. Marginal Inference in MRFs using Frank-Wolfe , 2013 .
[13] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[14] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[15] Eric T. Nalisnick,et al. Under review as a conference paper at ICLR 2016 , 2015 .
[16] Sebastian Nowozin,et al. A decoupled approach to exemplar-based unsupervised learning , 2008, ICML '08.
[17] Geoffrey E. Hinton,et al. Factored 3-Way Restricted Boltzmann Machines For Modeling Natural Images , 2010, AISTATS.
[18] Nikos A. Vlassis,et al. The global k-means clustering algorithm , 2003, Pattern Recognit..
[19] Ben J. A. Kröse,et al. Efficient Greedy Learning of Gaussian Mixture Models , 2003, Neural Computation.
[20] Geoffrey E. Hinton,et al. Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.
[21] Geoffrey E. Hinton,et al. Self Supervised Boosting , 2002, NIPS.
[22] Francis R. Bach,et al. Breaking the Curse of Dimensionality with Convex Neural Networks , 2014, J. Mach. Learn. Res..
[23] Patrice Marcotte,et al. Some comments on Wolfe's ‘away step’ , 1986, Math. Program..
[24] Yee Whye Teh,et al. Bayesian Nonparametric Models , 2010, Encyclopedia of Machine Learning.
[25] Geoffrey E. Hinton,et al. Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.
[26] Geoffrey E. Hinton,et al. Modeling Human Motion Using Binary Latent Variables , 2006, NIPS.
[27] Xinhua Zhang,et al. Convex Two-Layer Modeling , 2013, NIPS.
[28] Yee Whye Teh,et al. A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.
[29] Hugo Larochelle,et al. An Infinite Restricted Boltzmann Machine , 2015, Neural Computation.
[30] Ruslan Salakhutdinov,et al. On the quantitative analysis of deep belief networks , 2008, ICML '08.
[31] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[32] Tijmen Tieleman,et al. Training restricted Boltzmann machines using approximations to the likelihood gradient , 2008, ICML '08.
[33] Haipeng Luo,et al. Online Gradient Boosting , 2015, NIPS.