Ultralow thermal conductivity from transverse acoustic phonon suppression in distorted crystalline α-MgAgSb

[1]  Jia-yue Yang,et al.  Decoupling thermal and electrical transport in α-MgAgSb with synergic pressure and doping strategy , 2019, Journal of Applied Physics.

[2]  U. Waghmare,et al.  Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1−xGexTe , 2019, Energy & Environmental Science.

[3]  A. Kolesnikov,et al.  Simulation of Inelastic Neutron Scattering Spectra Using OCLIMAX. , 2019, Journal of chemical theory and computation.

[4]  O. Delaire,et al.  Selective breakdown of phonon quasiparticles across superionic transition in CuCrSe2 , 2018, Nature Physics.

[5]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[6]  K. Biswas,et al.  Crystalline Solids with Intrinsically Low Lattice Thermal Conductivity for Thermoelectric Energy Conversion , 2018 .

[7]  U. Waghmare,et al.  Localized Vibrations of Bi Bilayer Leading to Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in Weak Topological Insulator n-Type BiSe. , 2018, Journal of the American Chemical Society.

[8]  Jun Mao,et al.  High thermoelectric performance of α-MgAgSb for power generation , 2018 .

[9]  Z. Ren,et al.  Anomalous electrical conductivity of n-type Te-doped Mg3.2Sb1.5Bi0.5 , 2017 .

[10]  Jie Chen,et al.  The general purpose powder diffractometer at CSNS , 2017, Physica B: Condensed Matter.

[11]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[12]  Jun Jiang,et al.  Improving Thermoelectric Performance of α‐MgAgSb by Theoretical Band Engineering Design , 2017 .

[13]  B. Iversen,et al.  Elaborating the Crystal Structures of MgAgSb Thermoelectric Compound: Polymorphs and Atomic Disorders , 2017 .

[14]  Gang Chen,et al.  $\textit{Ab initio}$ study of electron mean free paths and thermoelectric properties of lead telluride , 2017, 1706.09287.

[15]  Liu Yong,et al.  New trends, strategies and opportunities in thermoelectric materials: A perspective , 2017 .

[16]  Gang Chen,et al.  Recent progress and future challenges on thermoelectric Zintl materials , 2017 .

[17]  Yongsheng Zhang,et al.  The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb , 2017 .

[18]  U. Waghmare,et al.  Intrinsic Rattler-Induced Low Thermal Conductivity in Zintl Type TlInTe2. , 2017, Journal of the American Chemical Society.

[19]  Yue Chen,et al.  Liquid-like thermal conduction in intercalated layered crystalline solids , 2017, Nature Materials.

[20]  Di Wu,et al.  Origin of low thermal conductivity in SnSe , 2016 .

[21]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[22]  K. Trachenko,et al.  Collective modes and thermodynamics of the liquid state , 2015, Reports on progress in physics. Physical Society.

[23]  L. Gu,et al.  Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in α‐MgAgSb‐Based Materials , 2015 .

[24]  Dipanshu Bansal,et al.  Orbitally driven giant phonon anharmonicity in SnSe , 2015, Nature Physics.

[25]  M. Cliffe,et al.  Design of crystal-like aperiodic solids with selective disorder–phonon coupling , 2015, Nature Communications.

[26]  Kenneth McEnaney,et al.  High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts , 2015 .

[27]  Wenqing Zhang,et al.  High Performance α-MgAgSb Thermoelectric Materials for Low Temperature Power Generation , 2015 .

[28]  P. F. Peterson,et al.  Mantid - Data Analysis and Visualization Package for Neutron Scattering and $μ SR$ Experiments , 2014, 1407.5860.

[29]  Kenneth McEnaney,et al.  High thermoelectric performance of MgAgSb-based materials , 2014 .

[30]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[31]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[32]  T. Nakayama,et al.  Phonon-glass electron-crystal thermoelectric clathrates : Experiments and theory , 2014, 1402.5756.

[33]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[34]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[35]  E. Lara‐Curzio,et al.  Abinitio determination of crystal structures of the thermoelectric material MgAgSb , 2012 .

[36]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[37]  John R. D. Copley,et al.  DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data , 2009, Journal of research of the National Institute of Standards and Technology.

[38]  Fumio Mizuno,et al.  First Demonstration of Novel Method for Inelastic Neutron Scattering Measurement Utilizing Multiple Incident Energies , 2009 .

[39]  H. Shintani,et al.  Universal link between the boson peak and transverse phonons in glass. , 2008, Nature materials.

[40]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[41]  Lucas Lindsay,et al.  Three-phonon phase space and lattice thermal conductivity in semiconductors , 2008 .

[42]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[43]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[44]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[46]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[47]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  E. J. Freeman,et al.  Localized vibrational modes in metallic solids , 1998, Nature.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[52]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[53]  Price,et al.  Correlated motions in glasses studied by coherent inelastic neutron scattering. , 1985, Physical review letters.

[54]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[55]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[56]  D. Price,et al.  Chapter 1 – An Introduction to Neutron Scattering , 2013 .

[57]  Takeshi Nakatani,et al.  AMATERAS: A Cold-Neutron Disk Chopper Spectrometer , 2011 .

[58]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2010 .

[59]  B. Hammouda Introduction to Neutron Scattering , 2007 .

[60]  Felix Fernandez-Alonso,et al.  1. Introduction to Neutron Scattering , 1986 .