Experimental and theoretical study of toroidal vesicles.

We report the observation of toroidal and higher genus vesicles of diacetylenic phospholipids, a class of polymerizable amphiphiles. When unpolymerized, the vesicles exhibit different toroidal shapes in quantitative agreement with recent theoretical predictions. When partially polymerized, only a specific family of shapes has been observed: the Clifford torus or the branch of nonaxisymmetric shapes obtained by its conformal transformations. Assuming that partially polymerized vesicles are permeable on short time scale, we give a physical explanation of our findings. We also report the results of a variational calculation which approximates the nonaxisymmetric shape problem for finite spontaneous curvature.

[1]  W. Helfrich,et al.  The curvature elasticity of fluid membranes : A catalogue of vesicle shapes , 1976 .

[2]  Seifert,et al.  Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[3]  U. Seifert,et al.  Shape Transformations of Giant Vesicles: Extreme Sensitivity to Bilayer Asymmetry , 1990 .

[4]  P. Yager,et al.  The mechanism of formation of lipid tubules from liposomes , 1988 .

[5]  P. Yager,et al.  Structure of lipid tubules formed from a polymerizable lecithin. , 1985, Biophysical journal.

[6]  E. Evans Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. , 1980, Biophysical journal.

[7]  M. Kleman Energetics of the focal conics of smectic phases , 1977 .

[8]  T. Burke,et al.  Differential scanning calorimetric study of the thermotropic phase behavior of a polymerizable, tubule-forming lipid. , 1988, Chemistry and physics of lipids.

[9]  Seifert,et al.  Vesicles of toroidal topology. , 1991, Physical review letters.

[10]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[11]  Y. Bouligand,et al.  Recherches sur les textures des états mésomorphes - 1. Les arrangements focaux dans les smectiques : rappels et considérations théoriques , 1972 .

[12]  Ou-Yang Zhong-can,et al.  Anchor ring-vesicle membranes. , 1990 .

[13]  Bensimon,et al.  Observation of toroidal vesicles. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  U. Seifert Conformal transformations of vesicle shapes , 1991 .

[15]  Rao,et al.  Equilibrium budding and vesiculation in the curvature model of fluid lipid vesicles. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[16]  B. Duplantier Exact curvature energies of charged membranes of arbitrary shapes , 1990 .

[17]  Peterson Comment on "Instability and deformation of a spherical vesicle by pressure" , 1988, Physical review letters.

[18]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[19]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[20]  H. Lawson,et al.  Complete Minimal Surfaces in S 3 , 1970 .