Unique description of chemical structures based on hierarchically ordered extended connectivities (HOC procedures). I. Algorithms for finding graph orbits and canonical numbering of atoms

An iterative algorithm is described for finding topological equivalence, ordering, and canonical numbering of vertexes (atoms) in molecular graphs. Like the Morgan algorithm, it is based on extended connectivities but: (i) the latter are used hierarchically, i. e., the discrimination in the next iteration is carried out only for the vertices having the same extended connectivities (ranks) at the previous iteration; (ii) at equal extended connectivities, additional discrimination is introduced by the ranks of adjacent vertices; (iii) there is no “best name” search; (iv) three levels of complexity of chemical structures are distinguished and handled by different procedures.

[1]  A. Balaban,et al.  Unique description of chemical structures based on hierarchically ordered extended connectivities. VII: Condensed benzenoid hydrocarbons and their 1H NMR chemical shifts , 1985 .

[2]  Danail Bonchev,et al.  Unique description of chemical structures based on hierarchically ordered extended connectivities (HOC procedures). V. New topological indices, ordering of graphs, and recognition of graph similarity , 1984 .

[3]  A. Balaban,et al.  Hierarchically ordered extended connectivities. reflection in the 1H NMR chemical shifts of condensed benzenoid hydrocarbons , 1984 .

[4]  James B. Hendrickson,et al.  Unique numbering and cataloging of molecular structures , 1983, J. Chem. Inf. Comput. Sci..

[5]  D. Bonchev Principles of a novel nomenclature of organic compounds , 1983 .

[6]  M. Razinger,et al.  Extended connectivity in chemical graphs , 1982 .

[7]  Si Yu Zhu,et al.  Exhaustive generation of structural isomers for a given empirical formula-a new algorithm , 1982, J. Chem. Inf. Comput. Sci..

[8]  V. E. Golender,et al.  Graph potentials method and its application for chemical information processing , 1981, Journal of chemical information and computer sciences.

[9]  Danail Bonchev,et al.  Topological centric coding and nomenclature of polycyclic hydrocarbons. 1. Condensed benzenoid systems (polyhexes, fusenes) , 1981, J. Chem. Inf. Comput. Sci..

[10]  L. Paquette,et al.  Threefold transannular epoxide cyclization. Synthesis of a heterocyclic C17-hexaquinane , 1981 .

[11]  Danail Bonchev,et al.  Generalization of the Graph Center Concept, and Derived Topological Centric Indexes , 1980, J. Chem. Inf. Comput. Sci..

[12]  A. Goodson,et al.  Nodal Nomenclature–General Principles , 1979 .

[13]  Georg Gati,et al.  Further annotated bibliography on the isomorphism disease , 1979, J. Graph Theory.

[14]  G. A. Wilson,et al.  The Chemical Abstracts Service Chemical Registry System. II. Augmented Connectivity Molecular Formula , 1979, J. Chem. Inf. Comput. Sci..

[15]  Derek G. Corneil,et al.  The graph isomorphism disease , 1977, J. Graph Theory.

[16]  Milan Randic,et al.  On Canonical Numbering of Atoms in a Molecule and Graph Isomorphism , 1977, J. Chem. Inf. Comput. Sci..

[17]  Morton E. Munk,et al.  Computer Perception of Topological Symmetry , 1977, J. Chem. Inf. Comput. Sci..

[18]  Milan Randic,et al.  On Unique Numbering of Atoms and Unique Codes for Molecular Graphs , 1975, J. Chem. Inf. Comput. Sci..

[19]  W. T. Wipke,et al.  SIMULATION AND EVALUATION OF CHEMICAL SYNTHESIS, COMPUTER REPRESENTATION AND MANIPULATION OF STEREOCHEMISTRY , 1974 .

[20]  W. T. Wipke,et al.  Stereochemically unique naming algorithm , 1974 .

[21]  W. G. Town,et al.  Computer handling of chemical structure information , 1974, The Mathematical Gazette.

[22]  Milan Randić,et al.  On the recognition of identical graphs representing molecular topology , 1974 .

[23]  W J Wiswesser,et al.  Wiswesser Line Notation: Simplified Techniques for Converting Chemical Structures to WLN , 1972, Science.

[24]  I. Ugi,et al.  CHEMISTRY, A FINITE METRIC TOPOLOGY—SYNTHETIC PLANNING, AN EXERCISE IN ALGEBRA*† , 1972 .

[25]  R Fugmann,et al.  Theoretical aspects of communication in chemistry. , 1970, Angewandte Chemie.

[26]  Michael E. Fisher,et al.  Some Basic Definitions in Graph Theory , 1970 .

[27]  E. Feigenbaum,et al.  Applications of artificial intelligence for chemical inference. I. Number of possible organic compounds. Acyclic structures containing carbon, hydrogen, oxygen, and nitrogen , 1969 .

[28]  John H. Fletcher,et al.  The Nomenclature of Organic Chemistry , 1967 .

[29]  Alexander M. Moore,et al.  A Line-Formula Chemical Notation. , 1955 .

[30]  G. Malcolm Dyson,et al.  Book Reviews: A New Notation and Enumeration System for Organic Compounds , 1950 .

[31]  Frank Harary,et al.  Graph Theory , 2016 .

[32]  K. Humbel Chemical Applications of Topology and Graph Theory, R.B. King (Ed.). Elsevier Science Publishers, Amsterdam (1983), (ISBN 0-444-42244-7). XII + 494 p. Price Dfl. 275.00 , 1985 .

[33]  Howard E. Simmons,et al.  Synthesis of the first topologically non-planar molecule , 1981 .

[34]  Wolfgang Schubert,et al.  Constitutional symmetry and unique descriptors of molecules , 1978 .

[35]  Danail Bonchev,et al.  Symmetry and information content of chemical structures , 1976 .

[36]  M. Randic On rearrangement of the connectivity matrix of a graph , 1975 .

[37]  A. Mackay On rearranging the connectivity matrix of a graph , 1975 .

[38]  D. Corneil,et al.  An Efficient Algorithm for Graph Isomorphism , 1970, JACM.

[39]  William J. Wiswesser,et al.  The Wiswesser line-formula chemical notation , 1968 .

[40]  F. Harary,et al.  Chemical graphs—V : Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons , 1968 .

[41]  R. BRIGHTMAN,et al.  A New Notation and Enumeration System for Organic Compounds , 1947, Nature.

[42]  I. Miyazaki,et al.  AND T , 2022 .