On the informational efficiency of simple scoring rules

We study information aggregation in large elections. With two candidates, efficient information aggregation is possible (e.g., Feddersen and Pesendorfer [5], [6] and [7]). We show that this result does not extend to elections with more than two candidates. We study a class of simple scoring rules in voting games with Poisson population uncertainty and three candidates. No simple scoring rule aggregates information efficiently, even if preferences are dichotomous and a Condorcet winner always exists. We introduce a weaker criterion of informational efficiency that requires a voting rule to have at least one efficient equilibrium. Only approval voting satisfies this criterion.

[1]  T. Feddersen,et al.  Voting Behavior and Information Aggregation in Elections with Private Information , 1997 .

[2]  Yves Smeers,et al.  Equilibrium models for the carbon leakage problem , 2008 .

[3]  Roger B. Myerson,et al.  Large Poisson Games , 2000, J. Econ. Theory.

[4]  J. Gabszewicz La différenciation des produits , 2006 .

[5]  Laurent Bouton,et al.  One Person, Many Votes: Divided Majority and Information Aggregation , 2008 .

[6]  Matías Núñez,et al.  Condorcet Consistency of Approval Voting: a Counter Example in Large Poisson Games , 2010 .

[7]  J. Rombouts,et al.  Style Rotation and Performance Persistence of Mutual Funds , 2009 .

[8]  Nicolas Gillis,et al.  Using underapproximations for sparse nonnegative matrix factorization , 2009, Pattern Recognit..

[9]  Daniel Bienstock,et al.  Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice , 2002 .

[10]  Laurence A. Wolsey,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings , 2007, CPAIOR.

[11]  R. Weber,et al.  A Theory of Voting Equilibria , 1993, American Political Science Review.

[12]  Vladimir M. Veliov,et al.  Prices versus quantities in a vintage capital model , 2010 .

[13]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[14]  Jacek B. Krawczyk,et al.  A viability theory approach to a two-stage optimal control problem of technology adoption , 2007 .

[15]  Laurence A. Wolsey,et al.  Reformulation and Decomposition of Integer Programs , 2009, 50 Years of Integer Programming.

[16]  Aniol Llorente-Saguer,et al.  Divided Majority and Information Aggregation: Theory and Experiment , 2012 .

[17]  Stéphane Zuber,et al.  The Pareto Principle of Optimal Inequality , 2009 .

[18]  Jean-François Laslier,et al.  The Leader Rule , 2009 .

[19]  Navin Kartik,et al.  Preference Reversal and Information Aggregation in Elections , 2006 .

[20]  Andrea Silvestrini,et al.  What do we know about comparing aggregate and disaggregate forecasts , 2009 .

[21]  Roger B. Myerson,et al.  Comparison of Scoring Rules in Poisson Voting Games , 2002, J. Econ. Theory.

[22]  Jean-François Laslier,et al.  Overstating: A Tale of Two Cities , 2011 .

[23]  Jean-François Mertens,et al.  Regularity and stability of equilibria in an overlapping generations model with exogenous growth , 2009 .

[24]  R. Amir Supermodularity and Complementarity in Economics: An Elementary Survey , 2003 .

[25]  Carlo Rosa,et al.  Forecasting the Direction of Policy Rate Changes: The Importance of ECB Words , 2009 .

[26]  J. Dávila,et al.  The taxation of capital returns in overlapping generations economies without Financial assets , 2008 .

[27]  Douglas Muzzio,et al.  Approval voting , 1983 .

[28]  Laurence A. Wolsey,et al.  Lot-Sizing with Stock Upper Bounds and Fixed Charges , 2010, SIAM J. Discret. Math..

[29]  Erik Schokkaert,et al.  What good is happiness , 2009 .

[30]  Matías Núñez A study of Approval voting on Large Poisson Games , 2007 .

[31]  Marc Germain,et al.  Dynamic Core-Theoretic Cooperation in a Two-Dimensional International Environmental Model , 2009, Math. Soc. Sci..

[32]  Jean Hindriks Au-delà de Copernic : de la confusion au consensus ? , 2008 .

[33]  C. d'Aspremont,et al.  Household behavior and individual autonomy , 2009 .

[34]  V. Ginsburgh,et al.  Handbook of the Economics of the Art and Culture , 2006 .

[35]  Wolfgang Pesendorfer,et al.  Abstention in Elections with Asymmetric Information and Diverse Preferences , 1999, American Political Science Review.

[36]  J. Drèze,et al.  Public goods, environmental externalities and fiscal competition , 2006 .

[37]  On a Three-Alternative Condorcet Jury Theorem , 2011, SSRN Electronic Journal.

[38]  Christian M. Hafner,et al.  Estimating Autocorrelations in the Presence of Deterministic Trends , 2011 .

[39]  T. Feddersen,et al.  Convicting the Innocent: The Inferiority of Unanimous Jury Verdicts under Strategic Voting , 1996, American Political Science Review.

[40]  Thierry Bréchet,et al.  CAN EDUCATION BE GOOD FOR BOTH GROWTH AND THE ENVIRONMENT? , 2009, Macroeconomic Dynamics.

[41]  W. Pohlmeier,et al.  High frequency financial econometrics : recent developments , 2007 .

[42]  M. Sanin,et al.  Understanding volatility dynamics in the EU-ETS market , 2009 .

[43]  T. Feddersen,et al.  The Swing Voter's Curse , 1996 .

[44]  Jacques-François Thisse,et al.  Economic Geography: The Integration of Regions and Nations , 2008 .

[45]  Patrice Pieretti,et al.  On tax competition, public goods provision and jurisdictions' size CORE DP No. 2009/12 , 2011 .

[46]  Jean-François Mertens,et al.  Intergenerational Equity and the Discount Rate for Cost-Benefit Analysis , 2006 .

[47]  R. Myerson Extended Poisson Games and the Condorcet Jury Theorem , 1998 .

[48]  Michel Lubrano,et al.  The tradeoff between growth and redistribution: ELIE in an overlapping generations model , 2009 .