Energy-Chirp Compensation in a Laser Wakefield Accelerator.

The energy spread in laser wakefield accelerators is primarily limited by the energy chirp introduced during the injection and acceleration processes. Here, we propose the use of longitudinal density tailoring to reduce the beam chirp at the end of the accelerator. Experimental data sustained by quasi-3D particle-in-cell simulations show that broadband electron beams can be converted to quasimonoenergetic beams of ≤10% energy spread while maintaining a high charge of more than 120 pC. In the linear and quasilinear regimes of wakefield acceleration, the method could provide even lower, subpercent level, energy spread.

[1]  M. Tzoufras,et al.  Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime , 2007 .

[2]  B. Schmidt,et al.  Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator , 2015 .

[3]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[4]  A. Maier,et al.  Demonstration scheme for a laser-plasma driven free-electron laser , 2012 .

[5]  Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator , 2016 .

[6]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[7]  B. Schmidt,et al.  Chirp Mitigation of Plasma-Accelerated Beams by a Modulated Plasma Density. , 2016, Physical review letters.

[8]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[9]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[10]  Antoine Rousse,et al.  Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator , 2017, Light: Science & Applications.

[11]  D. Symes,et al.  2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator , 2016 .

[12]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  V Malka,et al.  Observation of longitudinal and transverse self-injections in laser-plasma accelerators , 2013, Nature Communications.

[15]  S. V. Bulanov,et al.  Particle injection into the wave acceleration phase due to nonlinear wake wave breaking , 1998 .

[16]  Erik Lefebvre,et al.  Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition , 2009, J. Comput. Phys..

[17]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[18]  S. Sebban,et al.  Demonstration of relativistic electron beam focusing by a laser-plasma lens , 2014, Nature Communications.

[19]  G. Malka,et al.  Electron Acceleration by a Wake Field Forced by an Intense Ultrashort Laser Pulse , 2002, Science.

[20]  R. Sigel,et al.  Polarized light interferometer for laser fusion studies. , 1979, The Review of scientific instruments.

[21]  Serge Bielawski,et al.  The LUNEX5 project in France , 2013 .

[22]  J. Cary,et al.  Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. , 2008, Physical review letters.

[23]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[24]  K. Ta Phuoc,et al.  Electron Rephasing in a Laser-Wakefield Accelerator. , 2015, Physical review letters.

[25]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[26]  Victor Malka,et al.  Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel , 2010 .

[27]  Victor Malka,et al.  Physics of fully-loaded laser-plasma accelerators , 2015 .

[28]  V. Malka,et al.  Laser plasma accelerators , 2011, 1112.5054.

[29]  S. Karsch,et al.  Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime. , 2015, Physical review letters.

[30]  G. Shvets,et al.  Electron self-injection and trapping into an evolving plasma bubble. , 2009, Physical review letters.

[31]  V. Malka,et al.  Energy boost in laser wakefield accelerators using sharp density transitions , 2015, 1512.05973.

[32]  Ferenc Krausz,et al.  Density-transition based electron injector for laser driven wakefield accelerators , 2010 .

[33]  Victor Malka,et al.  Laser-plasma lens for laser-wakefield accelerators , 2014 .

[34]  J. Gautier,et al.  An all-optical Compton source for single-exposure x-ray imaging , 2015, 1510.08316.

[35]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[36]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[37]  Eric Esarey,et al.  Numerical investigation of electron self-injection in the nonlinear bubble regime , 2013 .

[38]  S. Hooker,et al.  Developments in laser-driven plasma accelerators , 2013, Nature Photonics.