A novel fuzzy C-means algorithm and its application

The accurate and effective algorithm for segmenting image is very useful in many fields, especially in medical images. In this paper we introduced a novel method that focuses on segmenting the brain MR Image that is important for neural diseases. Because of many noises embedded in the acquiring procedure, such as eddy currents, susceptibility artifacts, rigid body motion and intensity inhomogeneity, segmenting the brain MR image is a difficult work. In this algorithm, we overcame the inhomogeneity shortage, by modifying the objective function by compensating its immediate neighborhood effect using Gaussian smooth method for decreasing the influence of the inhomogeneity and increasing the segmenting accuracy. Using simulate image and clinical MRI data, experiments show that our proposed algorithm is effective.