Second-order necessary conditions in a domain optimization problem

Second-order necessary conditions of the Kuhn-Tucker type for optimality in a domain optimization problem are studied. The second variation, corresponding to a boundary variation, of the solution to a boundary-value problem is shown to exist and is given as the solution of a boundary-value problem of the same type. The boundary data are shown to be given in terms of the solution and the first variation of the solution. From these results, the second variation of the objective function is calculated to derive second-order necessary conditions of the Kuhn-Tucker type.