Model membrane studies for characterization of different antibiotic activities of lipopeptides from Pseudomonas.

[1]  U. Bakowsky,et al.  Model membrane approaches to determine the role of calcium for the antimicrobial activity of friulimicin. , 2011, International journal of antimicrobial agents.

[2]  O. Nybroe,et al.  Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. , 2010, FEMS microbiology reviews.

[3]  M. Morikawa,et al.  Identification and Characterization of the Genes Responsible for the Production of the Cyclic Lipopeptide Arthrofactin by Pseudomonas sp. MIS38 , 2010, Bioscience, biotechnology, and biochemistry.

[4]  C. Saldanha,et al.  An overview about erythrocyte membrane. , 2010, Clinical hemorheology and microcirculation.

[5]  B. Lemaître,et al.  Association of Hemolytic Activity of Pseudomonas entomophila, a Versatile Soil Bacterium, with Cyclic Lipopeptide Production , 2009, Applied and Environmental Microbiology.

[6]  Paul D van Helden,et al.  The global burden of tuberculosis--combating drug resistance in difficult times. , 2009, The New England journal of medicine.

[7]  J. Loper,et al.  Genomics of secondary metabolite production by Pseudomonas spp. , 2009, Natural product reports.

[8]  A. Rinaldi,et al.  Lipopeptides as anti-infectives: a practical perspective , 2009, Central European Journal of Biology.

[9]  F. Govers,et al.  Cellular Responses of the Late Blight Pathogen Phytophthora infestans to Cyclic Lipopeptide Surfactants and Their Dependence on G Proteins , 2009, Applied and Environmental Microbiology.

[10]  Davy Sinnaeve,et al.  Structure and X-ray conformation of pseudodesmins A and B, two new cyclic lipodepsipeptides from Pseudomonas bacteria , 2009 .

[11]  H. Sahl,et al.  The Lipopeptide Antibiotic Friulimicin B Inhibits Cell Wall Biosynthesis through Complex Formation with Bactoprenol Phosphate , 2009, Antimicrobial Agents and Chemotherapy.

[12]  T. V. van Beek,et al.  Massetolide A Biosynthesis in Pseudomonas fluorescens , 2007, Journal of bacteriology.

[13]  Y. Nishimura,et al.  Cyclic Lipopeptide Antibiotics , 2008 .

[14]  James C. Sacchettini,et al.  Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis , 2008, Nature Reviews Microbiology.

[15]  H. Sahl,et al.  The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. , 2007, Biochimica et biophysica acta.

[16]  G. Khuller,et al.  Phospholipids of ethambutol-susceptible and resistant strains ofMycobacterium smegmatis , 1988, Journal of Biosciences.

[17]  Harald Gross,et al.  The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. , 2007, Chemistry & biology.

[18]  A. Evidente,et al.  WLIP and tolaasin I, lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii, permeabilise model membranes. , 2006, Biochimica et Biophysica Acta.

[19]  J. Weissenbach,et al.  Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila , 2006, Nature Biotechnology.

[20]  V. Miao,et al.  Natural products to drugs: daptomycin and related lipopeptide antibiotics. , 2005, Natural product reports.

[21]  V. Fogliano,et al.  Novel Cyclic Lipodepsipeptide from Pseudomonas syringae pv. lachrymans Strain 508 and Syringopeptin Antimicrobial Activities , 2005, Antimicrobial Agents and Chemotherapy.

[22]  U. Rothe,et al.  The Detection of UV-induced Membrane Damages by a Combination of Two Biosensor Techniques , 2005, Photochemistry and photobiology.

[23]  J. Vederas,et al.  Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. , 2005, Chemistry and physics of lipids.

[24]  H. Sahl,et al.  Dysregulation of bacterial proteolytic machinery by a new class of antibiotics , 2005, Nature Medicine.

[25]  Rekha Seshadri,et al.  Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 , 2005, Nature Biotechnology.

[26]  I. Smith,et al.  Hyperglycosylation of glycopeptidolipid of Mycobacterium smegmatis under nutrient starvation: structural studies. , 2005, Microbiology.

[27]  A. Ramamoorthy,et al.  Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. , 2005, Biochimica et biophysica acta.

[28]  A. Scaloni,et al.  Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A. , 2004, The Biochemical journal.

[29]  G. Bifulco,et al.  Tolaasins A--E, five new lipodepsipeptides produced by Pseudomonas tolaasii. , 2004, Journal of natural products.

[30]  Pooja Singh,et al.  Potential applications of microbial surfactants in biomedical sciences. , 2004, Trends in biotechnology.

[31]  O. Nybroe,et al.  Production of Cyclic Lipopeptides by Fluorescent Pseudomonads , 2004 .

[32]  T. V. van Beek,et al.  Biochemical, Genetic, and Zoosporicidal Properties of Cyclic Lipopeptide Surfactants Produced by Pseudomonas fluorescens , 2003, Applied and Environmental Microbiology.

[33]  A. Ortiz,et al.  Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. , 2003, Biochimica et biophysica acta.

[34]  P. Gurnev,et al.  Syringotoxin pore formation and inactivation in human red blood cell and model bilayer lipid membranes. , 2002, Biochimica et biophysica acta.

[35]  T. Kocagoz,et al.  Antimycobacterial Activity of Lipodepsipeptides Produced by Pseudomonas Syringae Pv Syringae B359 , 2002, Natural product letters.

[36]  K. Miura,et al.  Katanosin B and Plusbacin A3, Inhibitors of Peptidoglycan Synthesis in Methicillin-ResistantStaphylococcus aureus , 2001, Antimicrobial Agents and Chemotherapy.

[37]  P. Gurnev,et al.  Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes. , 2000, Bioelectrochemistry.

[38]  D. Busby,et al.  SB-253514 (I) and Analogues (II), (III): Novel Inhibitors of Lipoprotein Associated Phospholipase A2 Produced by Pseudomonas fluorescens DSM 11579. Part 2. Physico-Chemical Properties and Structure Elucidation. , 2000 .

[39]  S. Ready,et al.  SB-253514 and analogues; novel inhibitors of lipoprotein-associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. I. Fermentation of producing strain, isolation and biological activity. , 2000, The Journal of antibiotics.

[40]  D. Busby,et al.  SB-253514 and analogues: novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. II. Physico-chemical properties and structure elucidation. , 2000, The Journal of antibiotics.

[41]  J. Thirkettle SB-253514 and analogues; novel inhibitors of lipoprotein associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. III. Biotransformation using naringinase. , 2000, The Journal of antibiotics.

[42]  J. Takemoto,et al.  Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes. , 2000, Biochimica et biophysica acta.

[43]  S. Kanaya,et al.  Overproduction in Escherichia coli, purification and characterization of a family I.3 lipase from Pseudomonas sp. MIS38. , 2000, Biochimica et biophysica acta.

[44]  Jun Liu,et al.  Cell Wall Structure of a Mutant of Mycobacterium smegmatis Defective in the Biosynthesis of Mycolic Acids* , 2000, The Journal of Biological Chemistry.

[45]  A. Ballio,et al.  The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. , 1999, Molecular plant-microbe interactions : MPMI.

[46]  A. Scaloni,et al.  Corceptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata , 1998, FEBS letters.

[47]  J. Takemoto,et al.  Membrane sterol composition modulates the pore forming activity of syringomycin E in human red blood cells. , 1998, Biochimica et biophysica acta.

[48]  J. Brand,et al.  Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes. , 1998, Biophysical journal.

[49]  L. Camoni,et al.  Biological activities of pseudomycin A, a lipodepsinonapeptide from Pseudomonas syringae MSU 16H. , 1997, Phytochemistry.

[50]  R. Andersen,et al.  Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. , 1997, Journal of natural products.

[51]  M. Simmaco,et al.  Biological properties and spectrum of activity ofPseudomonas syringaepv.syringaetoxins , 1997 .

[52]  T. Johnsson,et al.  Cellular Fatty Acid profiles of lactobacillus and lactococcus strains in relation to the oleic Acid content of the cultivation medium , 1995, Applied and environmental microbiology.

[53]  M. Tester,et al.  Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. , 1995, Molecular plant-microbe interactions : MPMI.

[54]  T. Imanaka,et al.  A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38 , 1993, Journal of bacteriology.

[55]  D. Cooper,et al.  Ionic channels induced by surfactin in planar lipid bilayer membranes. , 1991, Biochimica et biophysica acta.

[56]  Atta-ur- Rahman,et al.  Studies in natural products chemistry , 1988 .

[57]  H. Tsuchiya,et al.  High-performance liquid chromatographic analysis of bacterial fatty acid composition for chemotaxonomic characterization of oral streptococci , 1986, Journal of clinical microbiology.

[58]  D. White,et al.  Phospholipid Composition and Metabolism of Micrococcus denitrificans , 1972, Journal of bacteriology.