Personalized recommendation based on unbiased consistence

Recently, in physical dynamics, mass-diffusion–based recommendation algorithms on bipartite network provide an efficient solution by automatically pushing possible relevant items to users according to their past preferences. However, traditional mass-diffusion–based algorithms just focus on unidirectional mass diffusion from objects having been collected to those which should be recommended, resulting in a biased causal similarity estimation and not-so-good performance. In this letter, we argue that in many cases, a user's interests are stable, and thus bidirectional mass diffusion abilities, no matter originated from objects having been collected or from those which should be recommended, should be consistently powerful, showing unbiased consistence. We further propose a consistence-based mass diffusion algorithm via bidirectional diffusion against biased causality, outperforming the state-of-the-art recommendation algorithms in disparate real data sets, including Netflix, MovieLens, Amazon and Rate Your Music.

[1]  Yi-Cheng Zhang,et al.  Solving the apparent diversity-accuracy dilemma of recommender systems , 2008, Proceedings of the National Academy of Sciences.

[2]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.