On the application of geometric optimal control theory to Nuclear Magnetic Resonance

We present some applications of geometric optimal control theory to control problems in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). Using the Pontryagin Maximum Principle (PMP), the optimal trajectories are found as solutions of a pseudo-Hamiltonian system. This computation can be completed by second-order optimality conditions based on the concept of conjugate points. After a brief physical introduction to NMR, this approach is applied to analyze two relevant optimal control issues in NMR and MRI: the control of a spin 1/2 particle in presence of radiation damping effect and the maximization of the contrast in MRI. The theoretical analysis is completed by numerical computations. This work has been made possible by the central and essential role of B. Bonnard, who has been at the heart of this project since 2009.

[1]  Warren S. Warren,et al.  Dynamics of radiation damping in nuclear magnetic resonance , 1989 .

[2]  Navin Khaneja,et al.  Optimal Control Methods in NMR Spectroscopy , 2010 .

[3]  Thomas H. Mareci,et al.  Selective inversion radiofrequency pulses by optimal control , 1986 .

[4]  C. Jack,et al.  Contrast optimization of fluid‐attenuated inversion recovery (flair) imaging , 1995, Magnetic resonance in medicine.

[5]  J V Hajnal,et al.  MRI: use of the inversion recovery pulse sequence. , 1998, Clinical radiology.

[6]  M. S. Vinding,et al.  Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods. , 2012, The Journal of chemical physics.

[7]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[8]  D. Sugny,et al.  Exploring the Physical Limits of Saturation Contrast in Magnetic Resonance Imaging , 2012, Scientific Reports.

[9]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[10]  Nicolaas Bloembergen,et al.  Radiation Damping in Magnetic Resonance Experiments , 1954 .

[11]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[12]  John Marriott,et al.  Singular Trajectories and the Contrast Imaging Problem in Nuclear Magnetic Resonance , 2013, SIAM J. Control. Optim..

[13]  Navin Khaneja,et al.  Optimal experiments for maximizing coherence transfer between coupled spins. , 2005, Journal of magnetic resonance.

[14]  Navin Khaneja,et al.  Broadband geodesic pulses for three spin systems: time-optimal realization of effective trilinear coupling terms and indirect SWAP gates. , 2003, Journal of magnetic resonance.

[15]  Bernard Bonnard,et al.  The energy minimization problem for two-level dissipative quantum systems , 2010 .

[16]  S. Glaser,et al.  Time-optimal control of spin 1/2 particles in the presence of radiation damping and relaxation. , 2011, The Journal of chemical physics.

[17]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[18]  Wilson Fong Handbook of MRI Pulse Sequences , 2005 .

[19]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[20]  Monique Chyba,et al.  Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case , 2008, IEEE Transactions on Automatic Control.

[21]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[22]  Pierre Rouchon,et al.  Controllability Issues for Continuous-Spectrum Systems and Ensemble Controllability of Bloch Equations , 2009, 0903.2720.

[23]  Jr-Shin Li,et al.  Ensemble Controllability of the Bloch Equations , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[24]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[25]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[26]  Timo O. Reiss,et al.  Optimal control of spin dynamics in the presence of relaxation. , 2002, Journal of magnetic resonance.

[27]  G M Bydder,et al.  MR Imaging: Clinical Use of the Inversion Recovery Sequence , 1985, Journal of computer assisted tomography.

[28]  Burkhard Luy,et al.  Optimal control design of excitation pulses that accommodate relaxation. , 2007, Journal of magnetic resonance.

[29]  Navin Khaneja,et al.  Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. , 2009, Journal of magnetic resonance.

[30]  Dionisis Stefanatos,et al.  Optimal control of coupled spins in the presence of longitudinal and transverse relaxation , 2004 .

[31]  Bernard Bonnard,et al.  Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Integrable Case , 2009, SIAM J. Control. Optim..

[32]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[33]  Burkhard Luy,et al.  Pattern pulses: design of arbitrary excitation profiles as a function of pulse amplitude and offset. , 2005, Journal of magnetic resonance.

[34]  Ananyo Bhattacharya Chemistry: Breaking the billion-hertz barrier , 2010, Nature.

[35]  Jean-Baptiste Caillau,et al.  Conjugate and cut loci of a two-sphere of revolution with application to optimal control , 2009 .

[36]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[37]  Dionisis Stefanatos,et al.  Relaxation-optimized transfer of spin order in Ising spin chains (6 pages) , 2005 .

[38]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[39]  Jean-Baptiste Caillau,et al.  Second order optimality conditions in the smooth case and applications in optimal control , 2007 .

[40]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion: II. Rf-power optimized pulses. , 2008, Journal of magnetic resonance.

[41]  V. Jurdjevic Geometric control theory , 1996 .

[42]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[43]  Lucio Frydman,et al.  Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions , 2007 .

[44]  Klaas P. Pruessmann,et al.  Travelling-wave nuclear magnetic resonance , 2009, Nature.

[45]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[46]  Yun Zhang,et al.  Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance , 2012, IEEE Transactions on Automatic Control.

[47]  U. Boscain,et al.  Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.

[48]  Burkhard Luy,et al.  Boundary of quantum evolution under decoherence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Mathieu Claeys,et al.  Comparison of numerical methods in the contrast imaging problem in NMR , 2013, 52nd IEEE Conference on Decision and Control.

[50]  Olivier Cots Contrôle optimal géométrique : méthodes homotopiques et applications , 2012 .

[51]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[52]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[53]  F. Försterling Spin dynamics: Basics of Nuclear Magnetic Resonance, Second Edition , 2009 .