Real Time Trajectory Generation for Differentially Flat Systems

This paper considers the problem of real time trajectory generation and tracking for nonlinear control systems. We employ a two degree of freedom approach that separates the nonlinear tracking problem into real time trajectory generation followed by local (gain-scheduled) stabilization. The central problem which we consider is how to generate, possibly with some delay, a feasible state space and input trajectory in real time from an output trajectory that is given online. We propose two algorithms that solve the real time trajectory generation problem for differentially flat systems with (possibly non-minimum phase) zero dynamics. One is based on receding horizon point to point steering, the other allows additional minimization of a cost function. Both algorithms explicitly address the tradeoff between stability and performance and we prove convergence of the algorithms for a reasonable class of output trajectories. To illustrate the application of these techniques to physical systems, we present experimental results using a vectored thrust flight control experiment built at Caltech. A brief introduction to differentially flat systems and its relationship with feedback linearization is also included.

[1]  Richard M. Murray,et al.  EXPERIMENTAL COMPARISON OF TRAJECTORY TRACKERS FOR A CAR WITH TRAILERS , 1996 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[4]  George Meyer,et al.  Nonlinear system guidance in the presence of transmission zero dynamics , 1995 .

[5]  B. Paden,et al.  Stable inversion of nonlinear non-minimum phase systems , 1996 .

[6]  Ralf Rothfuß,et al.  Flatness based control of a nonlinear chemical reactor model , 1996, Autom..

[7]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[8]  L. Hunt,et al.  Nonlinear system guidance , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[9]  R. Murray,et al.  Configuration Flatness of Lagrangian Systems Underactuated by One Control , 1998 .

[10]  L. Hunt,et al.  Global transformations of nonlinear systems , 1983 .

[11]  J. Marsden,et al.  Dynamic inversion of nonlinear maps with applications to nonlinear control and robotics , 1995 .

[12]  Philippe Martin,et al.  Flatness and Sampling Control of Induction Motors , 1996 .

[13]  M.J. van Nieuwstadt,et al.  Approximate trajectory generation for differentially flat systems with zero dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[14]  Richard M. Murray,et al.  Fast Mode Switching for a Thrust Vectored , 1996 .

[15]  Jean Lévine,et al.  A nonlinear approach to the control of magnetic bearings , 1996, IEEE Trans. Control. Syst. Technol..

[16]  R. Murray,et al.  Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems , 1995 .

[17]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[18]  B. Paden,et al.  Exact output tracking for nonlinear time-varying systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  Philippe Martin,et al.  Any (controllable) driftless system with 3 inputs and 5 states is flat , 1995 .

[20]  Richard M. Murray,et al.  An experimental comparison of controllers for a vectored thrust, ducted fan engine , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[21]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[22]  J. K. Hedrick,et al.  An internal equilibrium manifold method of tracking for nonlinear nonminimum phase systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[23]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[24]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[25]  Richard M. Murray,et al.  Trajectory Generation for a Towed Cable System Using Differential Flatness , 1996 .

[26]  Philippe Martin,et al.  Feedback linearization and driftless systems , 1994, Math. Control. Signals Syst..

[27]  van Nieuwstadt,et al.  Trajectory generation for nonlinear control systems , 1996 .

[28]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[29]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[30]  J. Grizzle,et al.  Necessary conditions for asymptotic tracking in nonlinear systems , 1994, IEEE Trans. Autom. Control..

[31]  Degang Chen An Iterative Solution to Stable Inversion of Nonminimum Phase Systems , 1993, 1993 American Control Conference.

[32]  E. Cartan,et al.  Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes , 1914 .

[33]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[34]  R. Murray,et al.  Differential flatness and absolute equivalence , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.