Absence of low-δ18O magmas despite widespread assimilation of altered crust in a large magmatic and hydrothermal province

[1]  J. Dilles,et al.  Chemical vectoring in continental geothermal systems: Composition of altered rocks and illite as guides to magmatic degassing , 2023, Geothermics.

[2]  G. Leonard,et al.  The compositional diversity and temporal evolution of an active andesitic arc stratovolcano: Tongariro, Taupō Volcanic Zone, New Zealand , 2023, Contributions to Mineralogy and Petrology.

[3]  O. Laurent,et al.  Reworking subducted sediments in arc magmas and the isotopic diversity of the continental crust: The case of the Ordovician Famatinian crustal section, Argentina , 2022, Earth and Planetary Science Letters.

[4]  A. Stefánsson,et al.  Fluids in Geothermal Systems , 2020 .

[5]  I. Bindeman,et al.  Low-δ18O silicic magmas on Earth: A review , 2020 .

[6]  N. Tsuchiya,et al.  Exploring and Modeling the Magma–Hydrothermal Regime , 2020, Geosciences.

[7]  M. C. Rowe,et al.  What lies beneath? Reconstructing the primitive magmas fueling voluminous silicic volcanism using olivine-hosted melt inclusions , 2020, Geology.

[8]  D. Rubatto,et al.  An Internally-Consistent Database for Oxygen Isotope Fractionation Between Minerals , 2019, Journal of Petrology.

[9]  P. Ulmer,et al.  Experimental Melting of Hydrothermally Altered Rocks: Constraints for the Generation of Low-δ18O Rhyolites in the Central Snake River Plain , 2019, Journal of Petrology.

[10]  J. K. Dash,et al.  Mineralogical, chemical, and Sr-Nd isotopic effects of hydrothermal alteration of near-surface rhyolite in the Los Azufres geothermal field, Mexico , 2018, Lithos.

[11]  R. Langridge,et al.  Rapid Evolution of Subduction‐Related Continental Intraarc Rifts: The Taupo Rift, New Zealand , 2017 .

[12]  V. Troll,et al.  Hf isotope evidence for variable slab input and crustal addition in basalts and andesites of the Taupo Volcanic Zone, New Zealand , 2017 .

[13]  J. VanTongeren,et al.  Oxygen isotope trajectories of crystallizing melts: Insights from modeling and the plutonic record , 2017 .

[14]  G. Leonard,et al.  Ignimbrite flare-ups and their drivers: A New Zealand perspective , 2016 .

[15]  J. Valley,et al.  Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for the low-δ18O magmatism of the Snake River Plain–Yellowstone hotspot and other low-δ18O large igneous provinces , 2016, Contributions to Mineralogy and Petrology.

[16]  J. Baker,et al.  Generation and Rejuvenation of a Supervolcanic Magmatic System: a Case Study from Mangakino Volcanic Centre, New Zealand , 2016 .

[17]  R. Maas,et al.  Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand , 2015 .

[18]  Paul W. Williams,et al.  A review of New Zealand palaeoclimate from the Last Interglacial to the global Last Glacial Maximum , 2015 .

[19]  G. Leonard,et al.  Age and eruptive center of the Paeroa Subgroup ignimbrites (Whakamaru Group) within the Taupo Volcanic Zone of New Zealand , 2014 .

[20]  G. Bignall,et al.  Stratigraphy and structure of the Ngatamariki geothermal system from new zircon U–Pb geochronology: Implications for Taupo Volcanic Zone evolution , 2014 .

[21]  Kathryn Erin Watts,et al.  Large-volume rhyolite genesis in caldera complexes of the Snake River Plain , 2011 .

[22]  M. Ghiorso,et al.  Rhyolite-MELTS: a Modified Calibration of MELTS Optimized for Silica-rich, Fluid-bearing Magmatic Systems , 2010 .

[23]  M. Burkhard,et al.  Preface , 2010, IOP Conference Series: Materials Science and Engineering.

[24]  N. Mortimer,et al.  Evidence from zircon U-Pb age spectra for crustal structure and felsic magma genesis at Taupo volcano, New Zealand , 2010 .

[25]  G. Leonard,et al.  Volcanic and structural evolution of the Okataina Volcanic Centre; dominantly silicic volcanism associated with the Taupo Rift, New Zealand , 2010 .

[26]  V. Manea,et al.  Subduction-related Volatile Recycling and Magma Generation beneath Central Mexico: Insights from Melt Inclusions, Oxygen Isotopes and Geodynamic Models , 2009 .

[27]  J. Cole,et al.  A Rhyolite Compositional Continuum Governed by Lower Crustal Source Conditions in the Taupo Volcanic Zone, New Zealand , 2008 .

[28]  J. Wolff,et al.  Large-volume, low-δ18O rhyolites of the central Snake River Plain, Idaho, USA , 2005 .

[29]  W. Kissling,et al.  The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand , 2005 .

[30]  Richard H. Sibson,et al.  Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand , 2004 .

[31]  J. Valley,et al.  Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust , 2004 .

[32]  H. Bibby,et al.  Seismic velocity structure of the central Taupo Volcanic Zone, New Zealand, from local earthquake tomography , 2003 .

[33]  Yong‐Fei Zheng,et al.  Calculation of oxygen isotope fractionation in magmatic rocks , 2003 .

[34]  A. Crawford,et al.  Oxygen Isotope Geochemistry of Oceanic-Arc Lavas , 2000 .

[35]  R. Gregory,et al.  LOW-18O SILICIC MAGMAS : WHY ARE THEY SO RARE? , 1998 .

[36]  J. Cole,et al.  The Whakamaru group ignimbrites, Taupo Volcanic Zone, New Zealand: evidence for reverse tapping of a zoned silicic magmatic system , 1998 .

[37]  I. Graham,et al.  Temperatures and isotopic evolution of silicic magmas, Taupo Volcanic Zone and Coromandel, New Zealand , 1996 .

[38]  Michael McWilliams,et al.  Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review , 1995 .

[39]  M. Hochstein Crustal heat transfer in the Taupo Volcanic Zone (New Zealand): comparison with other volcanic arcs and explanatory heat source models , 1995 .

[40]  Todd G. Caldwell,et al.  Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation , 1995 .

[41]  J. Cole,et al.  Petrology and petrogenesis of volcanic rocks from the Taupo Volcanic Zone: a review , 1995 .

[42]  W. Giggenbach,et al.  Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand , 1995 .

[43]  Z. Sharp,et al.  18O16O isotope geochemistry of silicic lava flows erupted from Volcán Ollagüe, Andean Central Volcanic Zone , 1995 .

[44]  M. Norman,et al.  Geochemical zoning and eruptive mixing in ignimbrites from Mangakino volcano, Taupo Volcanic Zone, New Zealand , 1993 .

[45]  G. L. Farmer,et al.  Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies , 1991 .

[46]  L. Riciputi,et al.  Nd- and Pb-isotope variations in the multicyclic central caldera cluster of the San Juan volcanic field, Colorado, and implications for crustal hybridization , 1990 .

[47]  R. Fournier Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System , 1989 .

[48]  A. Grunder Low δ18O silicic volcanic rocks at the Calabozos caldera complex, southern Andes , 1987 .

[49]  W. Hildreth,et al.  Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau Volcanic Field , 1984 .

[50]  P. Blattner,et al.  The origin of lavas and ignimbrites of the Taupo Volcanic Zone, New Zealand, in the light of oxygen isotope data , 1982 .

[51]  W. Hildreth Gradients in silicic magma chambers: Implications for lithospheric magmatism , 1981 .

[52]  D. DePaolo Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization , 1981 .

[53]  H. Taylor The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks , 1980 .

[54]  H. Taylor The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition , 1974 .

[55]  H. Taylor Oxygen isotope evidence for large-scale interaction between meteoric ground waters and Tertiary Granodiorite Intrusions, Western Cascade Range, Oregon , 1971 .

[56]  H. Craig Isotopic Variations in Meteoric Waters , 1961, Science.

[57]  I. Bindeman,et al.  A microanalytical oxygen isotopic and U-Th geochronologic investigation and modeling of rhyolite petrogenesis at the Krafla Central Volcano, Iceland , 2020 .

[58]  P. Ulmer,et al.  The effect of prior hydrothermal alteration on the melting behaviour during rhyolite formation in Yellowstone, and its importance in the generation of low- δ 18 O magmas , 2018 .

[59]  Colin J. N. Wilson,et al.  The volcanic, magmatic and tectonic setting of the Taupo Volcanic Zone, New Zealand, reviewed from a geothermal perspective , 2016 .

[60]  J. Eiler Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks , 2001 .

[61]  B. Houghton,et al.  Chronology and dynamics of a large silicic magmatic system: Central Taupo Volcanic Zone, New Zealand , 1995 .

[62]  M. McCulloch,et al.  Pb−Sr−Nd−O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New Zealand: evidence for assimilation followed by fractionation from basalt , 1994 .

[63]  M. McCulloch,et al.  The geochemistry and petrogenesis of basalts from the Taupo Volcanic Zone and Kermadec Island Arc, S.W. Pacific , 1993 .

[64]  H. Taylor,et al.  METEORIC-HYDROTHERMAL SYSTEMS. , 1986 .

[65]  Denis Norton,et al.  Theory of Hydrothermal Systems , 1984 .