Sub-projection-noise sensitivity in broadband atomic magnetometry.

We demonstrate sub-projection-noise sensitivity of a broadband atomic magnetometer using quantum nondemolition spin measurements. A cold, dipole-trapped sample of rubidium atoms provides a long-lived spin system in a nonmagnetic environment, and is probed nondestructively by paramagnetic Faraday rotation. The calibration procedure employs as known reference state, the maximum-entropy or "thermal" spin state, and quantitative imaging-based atom counting to identify electronic, quantum, and technical noise in both the probe and spin system. The measurement achieves a sensitivity 1.6 dB (2.8 dB) better than projection-noise (thermal state quantum noise) and will enable squeezing-enhanced broadband magnetometry.

[1]  V. Shah,et al.  High bandwidth atomic magnetometery with continuous quantum nondemolition measurements. , 2009, Physical review letters.

[2]  R. Namiki,et al.  Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. , 2008, Physical review letters.

[3]  J. Schmiedmayer,et al.  Long-Range Order in Electronic Transport Through Disordered Metal Films , 2008, Science.

[4]  M. Mitchell,et al.  Unified description of inhomogeneities, dissipation and transport in quantum light–atom interfaces , 2009 .

[5]  A. Boisen,et al.  Ultra low-noise differential ac-coupled photodetector for sensitive pulse detection applications , 2009 .

[6]  E. Cornell,et al.  Simplified System for Creating a Bose–Einstein Condensate , 2000, QELS 2000.

[7]  Hideo Mabuchi,et al.  Suppression of spin projection noise in broadband atomic magnetometry. , 2005, Physical review letters.

[8]  P. Lam,et al.  Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line , 2006, quant-ph/0611204.

[9]  V. Braginskii,et al.  Quantum-mechanical limitations in macroscopic experiments and modern experimental technique , 1975 .

[10]  Characterization of nonideal quantum non-demolition measurements , 1992 .

[11]  M. Mitchell,et al.  Hamiltonian design in atom-light interactions with rubidium ensembles: A quantum-information toolbox , 2007, 0712.0256.

[12]  P. Windpassinger,et al.  Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit , 2008, Proceedings of the National Academy of Sciences.

[13]  Kiyoshi Ishikawa,et al.  Quantum nondemolition measurement of spin via the paramagnetic Faraday rotation , 1999 .

[14]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[15]  Tensor polarizability and dispersive quantum measurement of multilevel atoms (14 pages) , 2005, quant-ph/0501033.

[16]  N. P. Bigelow,et al.  Atomic quantum non-demolition measurements and squeezing , 1998 .

[17]  M. Mitchell,et al.  Polarization-based light-atom quantum interface with an all-optical trap , 2008, 0812.4863.

[18]  Hideo Mabuchi,et al.  Real-Time Quantum Feedback Control of Atomic Spin-Squeezing , 2004, Science.

[19]  G. Harry,et al.  Two-stage superconducting-quantum-interference-device amplifier in a high-Q gravitational wave transducer , 1999, cond-mat/9910337.

[20]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[21]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[22]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[23]  V. Vuletić,et al.  States of an ensemble of two-level atoms with reduced quantum uncertainty. , 2008, Physical review letters.