Morse-smale complexes for piecewise linear 3-manifolds

We define the Morse-Smale complex of a Morse function over a 3-manifold as the overlay of the descending and ascending manifolds of all critical points. In the generic case, its 3-dimensional cells are shaped like crystals and are separated by quadrangular faces. In this paper, we give a combinatorial algorithm for constructing such complexes for piecewise linear data.

[1]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[2]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[3]  Damian J. Sheehy,et al.  Shape Description By Medial Surface Construction , 1996, IEEE Trans. Vis. Comput. Graph..

[4]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[5]  Weiant Wathen-Dunn,et al.  Models for the perception of speech and visual form : proceedings of a symposium , 1967 .

[6]  Leonidas J. Guibas,et al.  A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[7]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[8]  松本 幸夫 An introduction to Morse theory , 2002 .

[9]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[10]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[11]  Alla Sheffer,et al.  Hexahedral Mesh Generation using the Embedded Voronoi Graph , 1999, Engineering with Computers.

[12]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[13]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[14]  Azriel Rosenfeld,et al.  Computation of geometric properties from the medial axis transform in (O(nlogn) time , 1986, Comput. Vis. Graph. Image Process..

[15]  Robert L. Ogniewicz,et al.  Skeleton-space: a multiscale shape description combining region and boundary information , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Valerio Pascucci,et al.  Efficient computation of the topology of level sets , 2002, IEEE Visualization, 2002. VIS 2002..

[17]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[18]  Mikhail N. Vyalyi,et al.  Construction of contour trees in 3D in O(n log n) steps , 1998, SCG '98.

[19]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[20]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[21]  J. Wilhelms,et al.  Topological considerations in isosurface generation extended abstract , 1990, SIGGRAPH 1990.

[22]  Robert A. Hummel,et al.  Exploiting Triangulated Surface Extraction Using Tetrahedral Decomposition , 1995, IEEE Trans. Vis. Comput. Graph..

[23]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[24]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1990, SIGGRAPH 1990.

[25]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[26]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.