Hyperdifferential Operators and Continuous Functions on Function Fields

Abstract We prove that a sequence of hyperdifferential operators is an orthonormal basis of the space of continuous F q-linear functions on F q[[T]]. By Conrad's digit principle, the q-adic extensions of this sequence, called the digit derivatives, turn out to be an orthonormal basis of the whole space of continuous functions on F q[[T]]. We then give the explicit derivation of the formula for digit derivative coefficients.

[1]  Brian Alan Snyder Hyperdifferential operators on function fields and their applications , 2000 .

[2]  Helmut Hasse Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. , 1936 .

[3]  Sangtae Jeong A Comparison of the Carlitz and Digit Derivatives Bases in Function Field Arithmetic , 2000 .

[4]  Carl G. Wagner,et al.  Interpolation series for continuous functions on π-adic completions of GF(q, x) , 1971 .

[5]  H. Hasse,et al.  Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. (Nach einer brieflichen Mitteilung von F.K. Schmidt in Jena). , 1937 .

[6]  Jean-Pierre Serre,et al.  Endomorphismes complètement continus des espaces de Banachp-adiques , 1962 .

[7]  Oswald Teichmüller,et al.  Differentialrechnung bei Charakteristik p. , 1936 .

[8]  Friedrich Karl Schmidt Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern , 1939 .

[9]  David Goss Fourier series, measures and divided power series in the theory of function fields , 1989 .

[10]  Keith Conrad,et al.  The Digit Principle , 2000 .

[11]  Leonard Carlitz,et al.  On certain functions connected with polynomials in a Galois field , 1935 .

[12]  David Goss,et al.  Basic Structures of Function Field Arithmetic , 1997 .

[13]  Yvette Amice,et al.  Interpolation $p$-adique , 1964 .

[14]  Leonard Carlitz,et al.  A set of polynomials , 1940 .