Theoretical study of the nonlinear polarizabilities in H2N and NO2 substituted chromophores containing two hetero aromatic rings

Abstract The static first- and second-hyperpolarizabilities of a number of amino- and nitro-substituted chromophores containing two hetero aromatic rings have been calculated by ab initio time dependent Hartree–Fock (TDHF) method. The computed nonlinear polarizabilities correlate well with frontier orbital energies and hardness parameter ( η ). Furan and thiophene rings at the donor site and the thiazole and pyridine at the acceptor site are predicted to enhance the first hyperpolarizability ( β ) – but not 〈 γ 〉 values. The nature of the dependence of β and 〈 γ 〉 on the twist angle between the bridging rings have been explored.

[1]  J. Leszczynski,et al.  Quantum Chemical Calculations of the First- and Second-Order Hyperpolarizabilities of Molecules in Solutions , 2001 .

[2]  T. Rauchfuss,et al.  Third-Order Nonlinear Optical Properties of Sulfur-Rich Compounds , 1999 .

[3]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[4]  M. Ratner,et al.  Large molecular hyperpolarizabilities. Quantitative analysis of aromaticity and auxiliary donor-acceptor effects , 1997 .

[5]  K. Kamada,et al.  Molecular Design for Organic Nonlinear Optics: Polarizability and Hyperpolarizabilities of Furan Homologues Investigated by Ab Initio Molecular Orbital Method† , 2000 .

[6]  J. Brédas,et al.  Theoretical investigation of the electronic and geometric structures and nonlinear optical properties of 2H-pyrrole derivatives , 1991 .

[7]  P. Prasad,et al.  HYPERPOLARIZABILITIES OF ORGANIC MOLECULES : AB INITIO TIME-DEPENDENT COUPLED PERTURBED HARTREE-FOCK-ROOTHAAN STUDIES OF BASIC HETEROCYCLIC STRUCTURES , 1995 .

[8]  S. Karna,et al.  (Hyper)polarizabilities of GaN, GaP, and GaAs Clusters: An Ab Initio Time-Dependent Hartree-Fock Study † , 2000 .

[9]  C. Bird ABSOLUTE HARDNESS AS A CONVENIENT CRITERION OF HETEROAROMATICITY , 1997 .

[10]  M. Papadopoulos,et al.  The effect of charge transfer on the polarizability and hyperpolarizabilities of some selected, substituted polythiophenes: a comparative study , 1990 .

[11]  V. P. Rao,et al.  Theoretical and experimental studies of the molecular second order nonlinear optical responses of heteroaromatic compounds , 1994 .

[12]  S. Bhattacharyya,et al.  Theoretical study of solvent modulation of the first hyperpolarizability of PNA, DNBT and DCH , 2001 .

[13]  W. Bartkowiak,et al.  Conformation and solvent dependence of the first and second molecular hyperpolarizabilities of charge-transfer chromophores. Quantum-chemical calculations , 1999 .

[14]  J. Lehn,et al.  Nonlinear optical chromophores containing dithienothiophene as a new type of electron relay , 1999 .

[15]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[16]  Pushkara Rao Varanasi,et al.  The Important Role of Heteroaromatics in the Design of Efficient Second-Order Nonlinear Optical Molecules: Theoretical Investigation on Push−Pull Heteroaromatic Stilbenes , 1996 .

[17]  M. Papadopoulos,et al.  Dependence of the polarizability, .alpha., and hyperpolarizabilities, .beta. and .gamma., of a series of nitrogen heterocyclics on their molecular structure: a comparative study , 1990 .

[18]  A. Alparone,et al.  Second hyperpolarisability of furan homologues C4H4X (X=O, S, Se, Te): ab initio HF and DFT study , 2000 .

[19]  P. Sommer-Larsen,et al.  Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies , 2000 .

[20]  Peter Krämer,et al.  Second-order polarizability of donor-acceptor substituted oligothiophenes : substituent variation and conjugation length dependence , 1993 .

[21]  B. Pullman,et al.  "AROMATICITY, PSEUDO-AROMATICITY, ANTI-AROMATICITY" , 1971 .

[22]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[23]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[24]  P. Prasad,et al.  A New Class of Heterocyclic Compounds for Nonlinear Optics , 1995 .

[25]  Marcia L. Schilling,et al.  Use of thiazole rings to enhance molecular second-order nonlinear optical susceptibilities , 1990 .

[26]  V. P. Rao,et al.  Functionalized Fused Thiophenes: A New Class of Thermally Stable and Efficient Second-Order Nonlinear Optical Chromophores , 1994 .

[27]  J. Segura,et al.  Functionalized oligoarylenes as building blocks for new organic materials , 2000 .

[28]  Raymond J. Abraham,et al.  1H chemical shifts in NMR. Part 18. Ring currents and π-electron effects in hetero-aromatics , 2002 .

[29]  Molecular structures and non-linear optical properties of donor–acceptor quinoid-type molecules , 2000 .

[30]  T. Uchimaru,et al.  Hardness Profile: A Critical Study , 2001 .