Model-Based Segmentation Featuring Simultaneous Segment-Level Variable Selection

The authors propose a new Bayesian latent structure regression model with variable selection to solve various commonly encountered marketing problems related to market segmentation and heterogeneity. The proposed procedure simultaneously performs segmentation and regression analysis within the derived segments, in addition to determining the optimal subset of independent variables per derived segment. The authors present comparative analyses contrasting the performance of the proposed methodology against standard latent class regression and traditional Bayesian finite mixture regression. They demonstrate that their proposed Bayesian model compares favorably with these traditional benchmark models. They then present an actual commercial customer satisfaction study performed for an electric utility company in the southeastern United States, in which they examine the heterogeneous drivers of perceived quality. Finally, they discuss limitations of the research and provide several directions for further research.

[1]  W. DeSarbo,et al.  A Review of Recent Developments in Latent Class Regression Models , 1994 .

[2]  Jiahua Chen,et al.  Variable Selection in Finite Mixture of Regression Models , 2007 .

[3]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[4]  Marina Vannucci,et al.  Variable selection in clustering via Dirichlet process mixture models , 2006 .

[5]  W. Michael Conklin,et al.  Monte Carlo Methods in Bayesian Computation , 2001, Technometrics.

[6]  P. Saama MAXIMUM LIKELIHOOD AND BAYESIAN METHODS FOR MIXTURES OF NORMAL DISTRIBUTIONS , 1997 .

[7]  J. Carroll,et al.  Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables , 1984 .

[8]  W. DeSarbo,et al.  A mixture likelihood approach for generalized linear models , 1995 .

[9]  M. Wedel,et al.  Consumer benefit segmentation using clusterwise linear regression , 1989 .

[10]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[11]  M. Vannucci,et al.  Bayesian Variable Selection in Clustering High-Dimensional Data , 2005 .

[12]  Simon J. Blanchard,et al.  Implementing Managerial Constraints in Model-Based Segmentation: Extensions of Kim, Fong, and DeSarbo (2012) with an Application to Heterogeneous Perceptions of Service Quality , 2013 .

[13]  W. DeSarbo,et al.  Combinatorial Optimization Approaches to Constrained Market Segmentation: An Application to Industrial Market Segmentation , 1998 .

[14]  D. Hunter,et al.  mixtools: An R Package for Analyzing Mixture Models , 2009 .

[15]  J. B. Ramsey,et al.  Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .

[16]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[17]  Prasad A. Naik,et al.  Extending the Akaike Information Criterion to Mixture Regression Models , 2007 .

[18]  Greg M. Allenby,et al.  Do We Halo or Form? A Bayesian Mixture Model for Customer Satisfaction Data , 2010 .

[19]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[20]  M. Wedel,et al.  A Clusterwise Regression Method for Simultaneous Fuzzy Market Structuring and Benefit Segmentation , 1991 .

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  Nema Dean,et al.  Latent class analysis variable selection , 2010, Annals of the Institute of Statistical Mathematics.

[23]  Simon J. Blanchard,et al.  Estimating Multiple Consumer Segment Ideal Points from Context-Dependent Survey Data , 2008 .

[24]  C. Mallows,et al.  A Method for Comparing Two Hierarchical Clusterings , 1983 .

[25]  Iven Van Mechelen,et al.  A Bayesian approach to the selection and testing of mixture models , 2003 .

[26]  Joseph G. Ibrahim,et al.  Variable Selection in Regression Mixture Modeling for the Discovery of Gene Regulatory Networks , 2007 .

[27]  Wayne S. DeSarbo,et al.  Constrained classification: The use of a priori information in cluster analysis , 1984 .

[28]  M. Brusco,et al.  A variable-selection heuristic for K-means clustering , 2001 .

[29]  A. Tynan,et al.  Market Segmentation , 2018, Entrepreneurial Management Theory and Practice.

[30]  Wayne S. DeSarbo,et al.  Bayesian inference for finite mixtures of generalized linear models with random effects , 2000 .

[31]  Rick L. Andrews,et al.  Hierarchical Bayes versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction, and Partworth Recovery , 2002 .

[32]  Wayne S. DeSarbo,et al.  A Clusterwise Bilinear Multidimensional Scaling Methodology for Simultaneous Segmentation and Positioning Analyses , 2008 .

[33]  Ernst Wit,et al.  Probabilistic relabelling strategies for the label switching problem in Bayesian mixture models , 2010, Stat. Comput..

[34]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[35]  W. DeSarbo,et al.  Optimal variable weighting for hierarchical clustering: An alternating least-squares algorithm , 1985 .

[36]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[37]  E. Fowlkes,et al.  Variable selection in clustering , 1988 .

[38]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[39]  Ajay Jasra,et al.  Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling , 2005 .

[40]  C. Robert,et al.  Estimating Mixtures of Regressions , 2003 .

[41]  L. M. M.-T. Theory of Probability , 1929, Nature.

[42]  Ciprian M Crainiceanu,et al.  Bayesian Functional Data Analysis Using WinBUGS. , 2010, Journal of statistical software.

[43]  R. Gnanadesikan,et al.  Weighting and selection of variables for cluster analysis , 1995 .

[44]  F. Leisch,et al.  FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters , 2008 .

[45]  Jean-Michel Marin,et al.  Bayesian Inference on Finite Mixtures of Distributions , 2009 .

[46]  Greg M. Allenby,et al.  On the Heterogeneity of Demand , 1998 .

[47]  Robin K. S. Hankin,et al.  Exact Tests for Two-Way Contingency Tables with Structural Zeros , 2008 .

[48]  W. DeSarbo,et al.  A Bayesian methodology for simultaneously detecting and estimating regime change points and variable selection in multiple regression models for marketing research , 2007 .

[49]  A. Raftery,et al.  Variable Selection for Model-Based Clustering , 2006 .

[50]  S. Geer,et al.  ℓ1-penalization for mixture regression models , 2010, 1202.6046.

[51]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[52]  Michel Wedel,et al.  Latent Structure Regression , 2006 .

[53]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[54]  Sylvia Frühwirth-Schnatter,et al.  Capturing consumer heterogeneity in metric conjoint analysis using Bayesian mixture models , 2004 .

[55]  Greg M. Allenby,et al.  Models for Heterogeneous Variable Selection , 2006 .

[56]  R. Quandt A New Approach to Estimating Switching Regressions , 1972 .

[57]  W. DeSarbo,et al.  A Generalized Normative Segmentation Methodology Employing Conjoint Analysis , 2007 .

[58]  Wendell R. Smith Product Differentiation and Market Segmentation as Alternative Marketing Strategies , 1956 .

[59]  John Roberts,et al.  From academic research to marketing practice: Exploring the marketing science value chain , 2014, How to Get Published in the Best Marketing Journals.

[60]  Helmuth Späth,et al.  A fast algorithm for clusterwise linear regression , 1982, Computing.

[61]  Wayne S. DeSarbo,et al.  A simulated annealing methodology for clusterwise linear regression , 1989 .