Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow
暂无分享,去创建一个
[1] Takayuki Umeda,et al. Comparison of numerical interpolation schemes for one-dimensional electrostatic Vlasov code , 2006, Journal of Plasma Physics.
[2] Chi-Wang Shu,et al. A technique of treating negative weights in WENO schemes , 2000 .
[3] Eric Sonnendrücker,et al. Two-dimensional semi-Lagrangian Vlasov simulations of laser–plasma interaction in the relativistic regime , 1999, Journal of Plasma Physics.
[4] E Weinan,et al. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow , 1992 .
[5] Xiangxiong Zhang,et al. On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..
[6] K. W. Morton,et al. Characteristic Galerkin methods for scalar conservation laws in one dimension , 1990 .
[7] Eric Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of Vlasov Equations , 1998 .
[8] Andrew J. Christlieb,et al. A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..
[9] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[10] Chi-Wang Shu,et al. High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..
[11] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[12] José A. Carrillo,et al. Nonoscillatory Interpolation Methods Applied to Vlasov-Based Models , 2007, SIAM J. Sci. Comput..
[13] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[14] Chi-Wang Shu,et al. High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..
[15] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[16] Taehun Lee,et al. A characteristic Galerkin method for discrete Boltzmann equation , 2001 .
[17] Olivier Coulaud,et al. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system , 2003 .
[18] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .
[19] Guillaume Latu,et al. Hermite Spline Interpolation on Patches for Parallelly Solving the Vlasov-Poisson Equation , 2007, Int. J. Appl. Math. Comput. Sci..
[20] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[21] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[22] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[23] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[24] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[25] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[26] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[27] Takashi Yabe,et al. Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations , 1985 .
[28] P. Colella,et al. A second-order projection method for the incompressible navier-stokes equations , 1989 .
[29] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[30] Chi-Wang Shu,et al. A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows , 2000 .