Two-Dimensional Magnetic Semiconducting Heterostructures of Single-Layer CrI3-CrI2.

Single-layer heterostructures of magnetic materials are unique platforms for studying spin-related phenomena in two dimensions (2D) and have promising applications in spintronics and magnonics. Here, we report the fabrication of 2D magnetic lateral heterostructures consisting of single-layer chromium triiodide (CrI3) and chromium diiodide (CrI2). By carefully adjusting the abundance of iodine based on molecular beam epitaxy, single-layer CrI3-CrI2 heterostructures were grown on Au(111) surfaces with nearly atomic-level seamless boundaries. Two distinct types of interfaces, i.e., zigzag and armchair interfaces, have been identified by means of scanning tunneling microscopy. Our scanning tunneling spectroscopy study combined with density functional theory calculations indicates the existence of spin-polarized ground states below and above the Fermi energy localized at the boundary. Both the armchair and zigzag interfaces exhibit semiconducting nanowire behaviors with different spatial distributions of density of states. Our work presents a novel low-dimensional magnetic system for studying spin-related physics with reduced dimensions and designing advanced spintronic devices.

[1]  Changzheng Wu,et al.  Ultrathin Van der Waals Antiferromagnet CrTe3 for Fabrication of In‐Plane CrTe3/CrTe2 Monolayer Magnetic Heterostructures , 2022, Advanced materials.

[2]  Weisheng Zhao,et al.  Generation and Control of Terahertz Spin Currents in Topology‐Induced 2D Ferromagnetic Fe 3 GeTe 2 |Bi 2 Te 3 Heterostructures (Adv. Mater. 9/2022) , 2022, Advances in Materials.

[3]  Ying-Shuang Fu,et al.  Planar Heterojunction of Ultrathin CrTe3 and CrTe2 van der Waals Magnet. , 2022, ACS nano.

[4]  Jijun Zhao,et al.  Photoinduced Spin Injection and Ferromagnetism in 2D Group III Monochalcogenides. , 2022, The journal of physical chemistry letters.

[5]  Shuai-Hua 帅华 Ji 季,et al.  Molecular beam epitaxy growth of iodide thin films , 2020, Chinese Physics B.

[6]  Xiaotao Han,et al.  Proximity‐Coupling‐Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures , 2020, Advanced materials.

[7]  J. Shan,et al.  Exchange magnetostriction in two-dimensional antiferromagnets , 2020, Nature Materials.

[8]  M. Araidai,et al.  Continuous Growth of Germanene and Stanene Lateral Heterostructures , 2020, Advanced Materials Interfaces.

[9]  S. Du,et al.  Quantum anomalous Hall effect in two-dimensional magnetic insulator heterojunctions , 2020, npj Computational Materials.

[10]  A. Foster,et al.  Topological superconductivity in a designer ferromagnet-superconductor van der Waals heterostructure , 2020, 2002.02141.

[11]  D. Zhong,et al.  Single-layer CrI3 grown by molecular beam epitaxy. , 2019, Science bulletin.

[12]  S. van Dijken,et al.  Electronic and magnetic characterization of epitaxial VSe2 monolayers on superconducting NbSe2 , 2019, Communications Physics.

[13]  S. Strauf,et al.  Magnetic proximity coupling of quantum emitters in WSe2 to van der Waals ferromagnets. , 2019, Nano letters.

[14]  Jianwei Wang,et al.  Recent Advances in 2D Lateral Heterostructures , 2019, Nano-micro letters.

[15]  Xiaodong Xu,et al.  Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.

[16]  Zhiming M. Wang,et al.  Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials , 2019, Nano-micro letters.

[17]  R. Wu,et al.  Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer , 2018, Science Advances.

[18]  S. Du,et al.  Bandgap broadening at grain boundaries in single-layer MoS2 , 2018, Nano Research.

[19]  M. Rabinal,et al.  Defect‐Controlled Copper Iodide: A Promising and Ecofriendly Thermoelectric Material , 2018 .

[20]  P. Sahoo,et al.  Laser‐Assisted Chemical Modification of Monolayer Transition Metal Dichalcogenides , 2018, Advanced Functional Materials.

[21]  Tianyou Zhai,et al.  2D Layered Material‐Based van der Waals Heterostructures for Optoelectronics , 2018 .

[22]  Jiamin Xue,et al.  Lateral Heterostructures Formed by Thermally Converting n-Type SnSe2 to p-Type SnSe. , 2018, ACS applied materials & interfaces.

[23]  Hassan Ghadiri,et al.  Band-offset-induced lateral shift of valley electrons in ferromagnetic MoS2/WS2 planar heterojunctions , 2018, 1803.03811.

[24]  Jijun Zhao,et al.  Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures , 2018 .

[25]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[26]  Jun Luo,et al.  Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices , 2017, Science.

[27]  An‐Ping Li,et al.  Spatially-resolved studies on the role of defects and boundaries in electronic behavior of 2D materials , 2017 .

[28]  Y. Fu,et al.  Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film , 2017, Nature Communications.

[29]  L. Cavallo,et al.  Impact of Interfacial Defects on the Properties of Monolayer Transition Metal Dichalcogenide Lateral Heterojunctions. , 2017, The journal of physical chemistry letters.

[30]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[31]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[32]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[33]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[34]  Y. Ninomiya,et al.  Truly Transparent p-Type γ-CuI Thin Films with High Hole Mobility , 2016 .

[35]  S. Owerre A first theoretical realization of honeycomb topological magnon insulator , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  S. Chae,et al.  Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries , 2016, Nature Communications.

[37]  J. Tersoff,et al.  Visualizing band offsets and edge states in bilayer–monolayer transition metal dichalcogenides lateral heterojunction , 2015, Nature Communications.

[38]  I. Ivanov,et al.  Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors , 2015, Nature Communications.

[39]  Andrew T. S. Wee,et al.  Bandgap tunability at single-layer molybdenum disulphide grain boundaries , 2015, Nature Communications.

[40]  Chendong Zhang,et al.  Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. , 2014, Nano letters.

[41]  Wang Yao,et al.  Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. , 2014, Nature materials.

[42]  J. Idrobo,et al.  Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges , 2014, Science.

[43]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[44]  S. Haigh,et al.  Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. , 2012, Nature materials.