Novel On-Line Adaptive Learning Algorithms for Blind Deconvolution Using the Natural Gradient Approach

[1]  S. Amari,et al.  Multichannel blind separation and deconvolution of sources with arbitrary distributions , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[2]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[3]  S. Amari,et al.  Quasi-Newton filtered-error and filtered-regressor algorithms for adaptive equalization and deconvolution , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[4]  Shun-ichi Amari,et al.  Stability Analysis Of Adaptive Blind Source Separation , 1997 .

[5]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[6]  Philippe Loubaton,et al.  Second order blind equalization in multiple input multiple output FIR systems: a weighted least squares approach , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[7]  S. Amari,et al.  Fast Converging Filtered Regressor Algorithms for Blind Equalization , 1996 .

[8]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[9]  Y. Hua Fast maximum likelihood for blind identification of multiple FIR channels , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[10]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.