Periodicity detection on the parameter-space of a forced Chua’s circuit

We report a Periodicity-Detection algorithm, implemented in a LabVIEW routine for real-time data analysis on experimental chaos, to evaluate the periodicity P of experimental time series. The Periodicity-Detector (PD) algorithm was applied to the forced Chua’s circuit with the aim to build the Periodicity-parameter-space (P-parameter-space). As results of the P-parameter-space, we could observe very complex dynamical behaviors, as regions of periodic structures, a new sequence of accumulation boundary, and the periodic structures organizing themselves in a period-adding bifurcation cascade. Those results agree with the maximal Lyapunov exponent and the bifurcation diagram analysis, presented in a previous work.

[1]  Leonardo A. B. Tôrres,et al.  Inductorless Chua's circuit , 2000 .

[2]  Periodic windows distribution resulting from homoclinic bifurcations in the two-parameter space , 2010, 1012.2241.

[3]  E. R. Viana,et al.  High-resolution parameter space of an experimental chaotic circuit. , 2010, Chaos.

[4]  Paulo C. Rech,et al.  Theoretical and experimental time series analysis of an inductorless Chua’s circuit , 2007 .

[5]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[6]  Alexander S. Mikhailov,et al.  Controlling Chemical Turbulence by Global Delayed Feedback: Pattern Formation in Catalytic CO Oxidation on Pt(110) , 2001, Science.

[7]  Murilo S. Baptista,et al.  Homoclinic orbits in a piecewise system and their relation with invariant sets , 2003 .

[8]  K. Wong,et al.  A fast chaotic cryptographic scheme with dynamic look-up table , 2002 .

[9]  Hayes,et al.  Experimental control of chaos for communication. , 1994, Physical review letters.

[10]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[11]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[12]  J. Yorke,et al.  Chaos in a double pendulum , 1992 .

[13]  Eckehard Schöll Nonequilibrium phase transitions in semiconductors : self-organization induced by generation and recombination processes , 1987 .

[14]  M S Baptista,et al.  Experimental observation of a complex periodic window. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Yoshisuke Ueda,et al.  Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Ronilson Rocha,et al.  An inductor-free realization of the Chua’s circuit based on electronic analogy , 2009 .

[17]  Ronilson Rocha,et al.  Experimental characterization of nonlinear systems: a real-time evaluation of the analogous Chua’s circuit behavior , 2010 .

[18]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[19]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[20]  J. A. Hołyst,et al.  Observations of deterministic chaos in financial time series by recurrence plots, can one control chaotic economy? , 2001 .

[21]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .

[22]  Ruedi Stoop,et al.  Real-world existence and origins of the spiral organization of shrimp-shaped domains. , 2010, Physical review letters.