Protein crystallography with a micrometre-sized synchrotron-radiation beam

For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 1010 photons s−1 µm−2 at the sample.

[1]  Manfred Burghammer,et al.  Crystal structure of a thermally stable rhodopsin mutant. , 2007, Journal of molecular biology.

[2]  Keiko Ikeda,et al.  The molecular organization of cypovirus polyhedra , 2007, Nature.

[3]  M. Burghammer,et al.  A-Amylose Single Crystals: Unit Cell Refinement from Synchrotron Radiation Microdiffraction Data , 2006 .

[4]  Manfred Burghammer,et al.  Protein crystallography microdiffraction. , 2005, Current opinion in structural biology.

[5]  Robert A. Grothe,et al.  Structure of the cross-β spine of amyloid-like fibrils , 2005, Nature.

[6]  Mark A Hill,et al.  Will reduced radiation damage occur with very small crystals? , 2005, Journal of synchrotron radiation.

[7]  J. A. Jorge,et al.  Xylanases from fungi: properties and industrial applications , 2005, Applied Microbiology and Biotechnology.

[8]  Richard W Farndale,et al.  Structure of the integrin alpha2beta1-binding collagen peptide. , 2004, Journal of molecular biology.

[9]  Manfred Burghammer,et al.  Structure of bovine rhodopsin in a trigonal crystal form. , 2003, Journal of molecular biology.

[10]  M. Burghammer,et al.  Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. I. two-layer polytype from 800 °C experiment , 2003 .

[11]  R. Dutzler,et al.  X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity , 2002, Nature.

[12]  J. Spudich,et al.  Crystal Structure of Sensory Rhodopsin II at 2.4 Angstroms: Insights into Color Tuning and Transducer Interaction , 2001, Science.

[13]  M. Facciotti,et al.  Characterization of conditions required for X-Ray diffraction experiments with protein microcrystals. , 2000, Biophysical journal.

[14]  H. Gilbert,et al.  A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase , 2000, Applied Microbiology and Biotechnology.

[15]  C. Riekel New avenues in x-ray microbeam experiments , 2000 .

[16]  M. Rao,et al.  Molecular and biotechnological aspects of xylanases. , 1999, FEMS microbiology reviews.

[17]  S. Cusack,et al.  Head‐to‐tail dimers and interdomain flexibility revealed by the crystal structure of HIV‐1 capsid protein (p24) complexed with a monoclonal antibody Fab , 1999, The EMBO journal.

[18]  Michael G. Rossmann,et al.  An Algorithm for Automatic Indexing of Oscillation Images using Fourier Analysis , 1997 .

[19]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[20]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[21]  M. Burghammer,et al.  Single crystal diffraction by submicrometer sized kaolinite ; observation of Bragg reflections and diffuse scattering , 1996 .

[22]  David C. Joy,et al.  Monte Carlo Modeling for Electron Microscopy and Microanalysis , 1995 .

[23]  J. Rouvinen,et al.  Three‐dimensional structure of endo‐1,4‐beta‐xylanase II from Trichoderma reesei: two conformational states in the active site. , 1994, The EMBO journal.

[24]  J. Rouvinen,et al.  Crystallization and preliminary X-ray analysis of two major xylanases from Trichoderma reesei. , 1993, Journal of molecular biology.

[25]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[26]  C. Tanford Macromolecules , 1994, Nature.