Locally most robust circles and boundary circles for area-preserving maps
暂无分享,去创建一个
[1] Robert S. MacKay,et al. Renormalisation in Area-Preserving Maps , 1993 .
[2] J. Stark. Determining the critical transition for circles of arbitrary rotation number , 1992 .
[3] I. Percival,et al. Modular smoothing and finite perturbation theory , 1991 .
[4] N. Haydn. On invariant curves under renormalisation , 1990 .
[5] H. Schellnhuber,et al. Simple extension of the Frenkel-Kontorova model: a different world , 1990 .
[6] I. Percival,et al. Critical function and modular smoothing , 1990 .
[7] J. M. Greene,et al. Higher-order fixed points of the renormalisation operator for invariant circles , 1990 .
[8] J. Stark,et al. Evaluation of an approximate renormalisation scheme for area-preserving maps , 1989 .
[9] R. MacKay,et al. Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation , 1989 .
[10] J. Mather. Destruction of invariant circles , 1988, Ergodic Theory and Dynamical Systems.
[11] R. MacKay. Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant ori , 1988 .
[12] D. Rand. Fractal bifurcation sets, renormalization strange sets and their universal invariants , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[13] Robert S. MacKay,et al. Universal small-scale structure near the boundary of siegel disks of arbitrary rotation number , 1987 .
[14] J. Wilbrink. Erratic behavior of invariant circles in standard-like mappings , 1987 .
[15] Robert S. MacKay,et al. Boundary circles for area-preserving maps , 1986 .
[16] D. Escande. Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .
[17] R. MacKay. Equivariant universality classes , 1984 .
[18] R. MacKay. A renormalization approach to invariant circles in area-preserving maps , 1983 .
[19] I. Percival. Chaotic boundary of a Hamiltonial map , 1982 .
[20] J. Bialek,et al. Fractal Diagrams for Hamiltonian Stochasticity , 1982, Hamiltonian Dynamical Systems.
[21] Dominique Escande,et al. Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .
[22] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[23] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[24] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[25] R. MacKay. Greene's residue criterion , 1992 .
[26] J. Stark. Unstable manifolds for the MacKay approximate renormalisation , 1989 .
[27] Y. Sinai,et al. Renormalization group method in the theory of dynamical systems , 1988 .
[28] M. R. Herman,et al. Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .