Locally most robust circles and boundary circles for area-preserving maps

What is the rotation number of the last rotational invariant circle to break in a family of area-preserving maps? And what are the rotation numbers of the outermost invariant circles around elliptic islands? Under the hypothesis that the breakup of invariant circles of arbitrary rotation number for a significant class of area-preserving maps is governed by a critical set of a renormalization operator with certain properties, the authors show that for maps in this universality class the rotation number of locally most robust circles is always noble, and that the rotation number of every boundary circle lies on the stable manifold of a certain Cantor set of numbers of constant type under the Gauss map.

[1]  Robert S. MacKay,et al.  Renormalisation in Area-Preserving Maps , 1993 .

[2]  J. Stark Determining the critical transition for circles of arbitrary rotation number , 1992 .

[3]  I. Percival,et al.  Modular smoothing and finite perturbation theory , 1991 .

[4]  N. Haydn On invariant curves under renormalisation , 1990 .

[5]  H. Schellnhuber,et al.  Simple extension of the Frenkel-Kontorova model: a different world , 1990 .

[6]  I. Percival,et al.  Critical function and modular smoothing , 1990 .

[7]  J. M. Greene,et al.  Higher-order fixed points of the renormalisation operator for invariant circles , 1990 .

[8]  J. Stark,et al.  Evaluation of an approximate renormalisation scheme for area-preserving maps , 1989 .

[9]  R. MacKay,et al.  Fractal boundary for the existence of invariant circles for area-preserving maps: Observations and renormalisation explanation , 1989 .

[10]  J. Mather Destruction of invariant circles , 1988, Ergodic Theory and Dynamical Systems.

[11]  R. MacKay Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant ori , 1988 .

[12]  D. Rand Fractal bifurcation sets, renormalization strange sets and their universal invariants , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  Robert S. MacKay,et al.  Universal small-scale structure near the boundary of siegel disks of arbitrary rotation number , 1987 .

[14]  J. Wilbrink Erratic behavior of invariant circles in standard-like mappings , 1987 .

[15]  Robert S. MacKay,et al.  Boundary circles for area-preserving maps , 1986 .

[16]  D. Escande Stochasticity in classical Hamiltonian systems: Universal aspects , 1985 .

[17]  R. MacKay Equivariant universality classes , 1984 .

[18]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[19]  I. Percival Chaotic boundary of a Hamiltonial map , 1982 .

[20]  J. Bialek,et al.  Fractal Diagrams for Hamiltonian Stochasticity , 1982, Hamiltonian Dynamical Systems.

[21]  Dominique Escande,et al.  Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .

[22]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[23]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[24]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[25]  R. MacKay Greene's residue criterion , 1992 .

[26]  J. Stark Unstable manifolds for the MacKay approximate renormalisation , 1989 .

[27]  Y. Sinai,et al.  Renormalization group method in the theory of dynamical systems , 1988 .

[28]  M. R. Herman,et al.  Sur les courbes invariantes par les difféomorphismes de l'anneau. 2 , 1983 .