Motion Planning for Quadrupedal Locomotion: Coupled Planning, Terrain Mapping, and Whole-Body Control

Planning whole-body motions while taking into account the terrain conditions is a challenging problem for legged robots since the terrain model might produce many local minima. Our coupled planning method uses stochastic and derivatives-free search to plan both foothold locations and horizontal motions due to the local minima produced by the terrain model. It jointly optimizes body motion, step duration and foothold selection, and it models the terrain as a cost-map. Due to the novel attitude planning method, the horizontal motion plans can be applied to various terrain conditions. The attitude planner ensures the robot stability by imposing limits to the angular acceleration. Our whole-body controller tracks compliantly trunk motions while avoiding slippage, as well as kinematic and torque limits. Despite the use of a simplified model, which is restricted to flat terrain, our approach shows remarkable capability to deal with a wide range of noncoplanar terrains. The results are validated by experimental trials and comparative evaluations in a series of terrains of progressively increasing complexity.

[1]  Alexander Herzog,et al.  Structured contact force optimization for kino-dynamic motion generation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[2]  Jean-Claude Latombe,et al.  Multi-modal Motion Planning in Non-expansive Spaces , 2010, Int. J. Robotics Res..

[3]  Darwin G. Caldwell,et al.  Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on challenging terrain , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[4]  C. Webster Animals in Motion , 2012 .

[5]  Russ Tedrake,et al.  Planning robust walking motion on uneven terrain via convex optimization , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[6]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[7]  Alexander Herzog,et al.  A Convex Model of Momentum Dynamics for Multi-Contact Motion Generation , 2016, ArXiv.

[8]  Nicolas Mansard,et al.  Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[9]  Juan C. Grieco,et al.  A mixed-integer convex optimization framework for robust multilegged robot locomotion planning over challenging terrain , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[10]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[11]  Sylvain Miossec,et al.  Planning support contact-points for humanoid robots and experiments on HRP-2 , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Peter Fankhauser,et al.  Dynamic locomotion and whole-body control for quadrupedal robots , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Stefan Schaal,et al.  A Robust Quadruped Walking Gait for Traversing Rough Terrain , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  Darwin G. Caldwell,et al.  A COMBINED LIMIT CYCLE - ZERO MOMENT POINT BASED APPROACH FOR OMNI-DIRECTIONAL QUADRUPEDAL BOUNDING , 2017 .

[15]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[16]  Chonhyon Park,et al.  An Efficient Acyclic Contact Planner for Multiped Robots , 2018, IEEE Transactions on Robotics.

[17]  Christopher G. Atkeson,et al.  Optimization and learning for rough terrain legged locomotion , 2011, Int. J. Robotics Res..

[18]  Darwin G. Caldwell,et al.  Trajectory and foothold optimization using low-dimensional models for rough terrain locomotion , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Russ Tedrake,et al.  A direct method for trajectory optimization of rigid bodies through contact , 2014, Int. J. Robotics Res..

[20]  Darwin G. Caldwell,et al.  A reactive controller framework for quadrupedal locomotion on challenging terrain , 2013, 2013 IEEE International Conference on Robotics and Automation.

[21]  David E. Orin,et al.  Centroidal dynamics of a humanoid robot , 2013, Auton. Robots.

[22]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[23]  Darwin G. Caldwell,et al.  Probabilistic Contact Estimation and Impact Detection for State Estimation of Quadruped Robots , 2017, IEEE Robotics and Automation Letters.

[24]  Marco Hutter,et al.  Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-Effector Parameterization , 2018, IEEE Robotics and Automation Letters.

[25]  R J Full,et al.  Templates and anchors: neuromechanical hypotheses of legged locomotion on land. , 1999, The Journal of experimental biology.

[26]  Hae-Won Park,et al.  Quadrupedal galloping control for a wide range of speed via vertical impulse scaling. , 2015, Bioinspiration & biomimetics.

[27]  Pierre-Brice Wieber,et al.  Holonomy and Nonholonomy in the Dynamics of Articulated Motion , 2006 .

[28]  Nicolas Mansard,et al.  Multicontact Locomotion of Legged Robots , 2018, IEEE Transactions on Robotics.

[29]  Daniel D. Lee,et al.  Search-based planning for a legged robot over rough terrain , 2009, 2009 IEEE International Conference on Robotics and Automation.

[30]  Darwin G. Caldwell,et al.  On-line and on-board planning and perception for quadrupedal locomotion , 2015, 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[31]  Ferdinando Cannella,et al.  Design of HyQ – a hydraulically and electrically actuated quadruped robot , 2011 .

[32]  Gabriele Nava,et al.  Stability analysis and design of momentum-based controllers for humanoid robots , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Pablo González de Santos,et al.  Free Gaits for Quadruped Robots over Irregular Terrain , 2002, Int. J. Robotics Res..

[34]  Darwin G. Caldwell,et al.  LOCAL REFLEX GENERATION FOR OBSTACLE NEGOTIATION IN QUADRUPEDAL LOCOMOTION , 2013 .

[35]  Hongkai Dai,et al.  Whole-body Motion Planning with Simple Dynamics and Full Kinematics , 2014 .

[36]  Sangbae Kim,et al.  Quadruped bounding control with variable duty cycle via vertical impulse scaling , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Darwin G. Caldwell,et al.  Model-Based Hydraulic Impedance Control for Dynamic Robots , 2015, IEEE Transactions on Robotics.

[38]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[39]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[40]  Gerd Hirzinger,et al.  Posture and balance control for biped robots based on contact force optimization , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[41]  Nicolas Mansard,et al.  Differential Dynamic Programming for Multi-Phase Rigid Contact Dynamics , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[42]  Alexander Herzog,et al.  Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid , 2014, Autonomous Robots.

[43]  Yuval Tassa,et al.  Stochastic Complementarity for Local Control of Discontinuous Dynamics , 2010, Robotics: Science and Systems.

[44]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models , 2011, Int. J. Robotics Res..

[45]  Darwin G. Caldwell,et al.  A Feasibility Metric for Trajectory Optimization of Legged Robots using Wrench Polytopes , 2017, ArXiv.

[46]  Simona Nobili,et al.  Heterogeneous Sensor Fusion for Accurate State Estimation of Dynamic Legged Robots , 2017, Robotics: Science and Systems.

[47]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[48]  Carlos Mastalli,et al.  Passivity Based Whole-body Control for Quadrupedal Locomotion on Challenging Terrain , 2018, ArXiv.

[49]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[50]  Darwin G. Caldwell,et al.  Slip Detection and Recovery for Quadruped Robots , 2015, ISRR.

[51]  Marko B. Popovic,et al.  Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications , 2005, Int. J. Robotics Res..

[52]  Jerry E. Pratt,et al.  A Controller for the LittleDog Quadruped Walking on Rough Terrain , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[53]  Darwin G. Caldwell,et al.  On the role of load motion compensation in high-performance force control , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  Christopher G. Atkeson,et al.  An optimization approach to rough terrain locomotion , 2010, 2010 IEEE International Conference on Robotics and Automation.

[55]  Darwin G. Caldwell,et al.  High-slope terrain locomotion for torque-controlled quadruped robots , 2016, Autonomous Robots.

[56]  Robin Deits,et al.  Footstep planning on uneven terrain with mixed-integer convex optimization , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[57]  Carlos Mastalli,et al.  Simultaneous Contact, Gait, and Motion Planning for Robust Multilegged Locomotion via Mixed-Integer Convex Optimization , 2017, IEEE Robotics and Automation Letters.

[58]  Ian R. Manchester,et al.  Bounding on rough terrain with the LittleDog robot , 2011, Int. J. Robotics Res..

[59]  Alexander Dietrich,et al.  Multi-contact balancing of humanoid robots in confined spaces: Utilizing knee contacts , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[60]  Ludovic Righetti,et al.  Programmable central pattern generators: an application to biped locomotion control , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[61]  Carlos Mastalli,et al.  Passive Whole-Body Control for Quadruped Robots: Experimental Validation Over Challenging Terrain , 2018, IEEE Robotics and Automation Letters.

[62]  Andrew Y. Ng,et al.  Stereo vision and terrain modeling for quadruped robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[63]  Martin de Lasa,et al.  Robust physics-based locomotion using low-dimensional planning , 2010, ACM Trans. Graph..

[64]  Darwin G. Caldwell,et al.  Hierarchical planning of dynamic movements without scheduled contact sequences , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[65]  David E. Orin,et al.  Generation of dynamic humanoid behaviors through task-space control with conic optimization , 2013, 2013 IEEE International Conference on Robotics and Automation.

[66]  Nikolaus Hansen CMA-ES: A Function Value Free Second Order Optimization Method , 2014 .

[67]  Darwin G. Caldwell,et al.  Onboard perception-based trotting and crawling with the Hydraulic Quadruped Robot (HyQ) , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[68]  Stefan Schaal,et al.  Fast, robust quadruped locomotion over challenging terrain , 2010, 2010 IEEE International Conference on Robotics and Automation.

[69]  Andrew Y. Ng,et al.  A control architecture for quadruped locomotion over rough terrain , 2008, 2008 IEEE International Conference on Robotics and Automation.

[70]  Stefan Schaal,et al.  Learning locomotion over rough terrain using terrain templates , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.